Suppr超能文献

使用机器学习算法预测心理治疗中改变过程的效果:迈向过程层面的治疗个性化。

Using machine learning algorithms to predict the effects of change processes in psychotherapy: Toward process-level treatment personalization.

作者信息

Gómez Penedo Juan Martín, Rubel Julian, Meglio Manuel, Bornhauser Leo, Krieger Tobias, Babl Anna, Muiños Roberto, Roussos Andrés, Delgadillo Jaime, Flückiger Christoph, Berger Thomas, Lutz Wolfgang, Grosse Holtforth Martin

机构信息

Facultad de Psicologia, Universidad de Buenos Aires.

Department of Clinical Psychology and Psychotherapy, Osnabruck University.

出版信息

Psychotherapy (Chic). 2023 Dec;60(4):536-547. doi: 10.1037/pst0000507. Epub 2023 Oct 5.

Abstract

This study aimed to develop and test algorithms to determine the individual relevance of two psychotherapeutic change processes (i.e., mastery and clarification) for outcome prediction. We measured process and outcome variables in a naturalistic outpatient sample treated with an integrative treatment for a variety of diagnoses ( = 608) during the first 10 sessions. We estimated individual within-patient effects of each therapist-evaluated process of change on patient-evaluated subsequent outcomes on a session-by-session basis. Using patients' baseline characteristics, we trained machine learning algorithms on a randomly selected subsample ( = 407) to predict the effects of patients' process variables on outcome. We subsequently tested the predictive capacity of the best algorithm for each process on a holdout subsample ( = 201). We found significant within-patient effects of therapist perceived mastery and clarification on subsequent outcome. In the holdout subsample, the best-performing algorithms resulted in significant but small-to-medium correlations between the predicted and observed relevance of therapist perceived mastery ( = .18) and clarification ( = .16). Using the algorithms to create criteria for individual recommendations, in the holdout sample, we identified patients for whom mastery (14%) or clarification (18%) were indicated. In the mastery-indicated group, a greater focus on mastery was moderately associated with better outcome ( = .33, = .70), while in the clarification-indicated group, the focus was not related to outcome ( = -.05, = .10). Results support the feasibility of performing individual predictions regarding mastery process relevance that can be useful for therapist feedback and treatment recommendations. However, results will need to be replicated with prospective experimental designs. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

摘要

本研究旨在开发并测试算法,以确定两种心理治疗改变过程(即掌握和澄清)对结果预测的个体相关性。我们在一个自然主义的门诊样本中测量了过程和结果变量,该样本在最初的10次治疗中接受了针对各种诊断的综合治疗(=608)。我们逐 session 估计了每个由治疗师评估的改变过程对患者评估的后续结果的个体患者内效应。利用患者的基线特征,我们在一个随机选择的子样本(=407)上训练机器学习算法,以预测患者的过程变量对结果的影响。随后,我们在一个保留子样本(=201)上测试了每个过程的最佳算法的预测能力。我们发现治疗师感知到的掌握和澄清对后续结果有显著的患者内效应。在保留子样本中,表现最佳的算法在预测的和观察到的治疗师感知到的掌握(=0.18)和澄清(=0.16)的相关性之间产生了显著但中小程度的相关性。使用这些算法来创建个体推荐标准,在保留样本中,我们确定了表明需要掌握(14%)或澄清(18%)治疗的患者。在表明需要掌握治疗的组中,更关注掌握与更好的结果适度相关(=0.33,=0.70),而在表明需要澄清治疗的组中,关注与结果无关(=-0.05,=0.10)。结果支持了对掌握过程相关性进行个体预测的可行性,这对治疗师反馈和治疗推荐可能有用。然而,结果需要通过前瞻性实验设计进行复制。(PsycInfo数据库记录(c)2023美国心理学会,保留所有权利)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验