Suppr超能文献

利用机器学习增加创伤后应激障碍患者获得以创伤为重点的干预措施的机会并提高其参与度。

Using machine learning to increase access to and engagement with trauma-focused interventions for posttraumatic stress disorder.

作者信息

Lenton-Brym Ariella P, Collins Alexis, Lane Jeanine, Busso Carlos, Ouyang Jessica, Fitzpatrick Skye, Kuo Janice R, Monson Candice M

机构信息

Nellie Health.

Toronto Metropolitan University, Toronto, Ontario, Canada.

出版信息

Br J Clin Psychol. 2025 Mar;64(1):125-136. doi: 10.1111/bjc.12468. Epub 2024 May 7.

Abstract

BACKGROUND

Post-traumatic stress disorder (PTSD) poses a global public health challenge. Evidence-based psychotherapies (EBPs) for PTSD reduce symptoms and improve functioning (Forbes et al., Guilford Press, 2020, 3). However, a number of barriers to access and engagement with these interventions prevail. As a result, the use of EBPs in community settings remains disappointingly low (Charney et al., Psychological Trauma: Theory, Research, Practice, and Policy, 11, 2019, 793; Richards et al., Community Mental Health Journal, 53, 2017, 215), and not all patients who receive an EBP for PTSD benefit optimally (Asmundson et al., Cognitive Behaviour Therapy, 48, 2019, 1). Advancements in artificial intelligence (AI) have introduced new possibilities for increasinfg access to and quality of mental health interventions.

AIMS

The present paper reviews key barriers to accessing and engaging in EBPs for PTSD, discusses current applications of AI in PTSD treatment and provides recommendations for future AI integrations aimed at reducing barriers to access and engagement.

DISCUSSION

We propose that AI may be utilized to (1) assess treatment fidelity; (2) elucidate novel predictors of treatment dropout and outcomes; and (3) facilitate patient engagement with the tasks of therapy, including therapy practice. Potential avenues for technological advancements are also considered.

摘要

背景

创伤后应激障碍(PTSD)是一项全球性的公共卫生挑战。针对PTSD的循证心理疗法(EBPs)可减轻症状并改善功能(福布斯等人,吉尔福德出版社,2020年,第3页)。然而,获取和参与这些干预措施存在诸多障碍。因此,EBPs在社区环境中的使用仍然低得令人失望(查尼等人,《心理创伤:理论、研究、实践与政策》,第11卷,2019年,第793页;理查兹等人,《社区心理健康杂志》,第53卷,2017年,第215页),而且并非所有接受PTSD循证心理疗法的患者都能获得最佳疗效(阿斯芒森等人,《认知行为疗法》,第48卷,2019年,第1页)。人工智能(AI)的进步为增加心理健康干预措施的可及性和质量带来了新的可能性。

目的

本文回顾了获取和参与PTSD循证心理疗法的主要障碍,讨论了AI在PTSD治疗中的当前应用,并为未来旨在减少获取和参与障碍的AI整合提供建议。

讨论

我们建议AI可用于(1)评估治疗保真度;(2)阐明治疗退出和结果的新预测因素;以及(3)促进患者参与治疗任务,包括治疗实践。还考虑了技术进步的潜在途径。

相似文献

本文引用的文献

2
Illusory generalizability of clinical prediction models.临床预测模型的虚幻泛化性。
Science. 2024 Jan 12;383(6679):164-167. doi: 10.1126/science.adg8538. Epub 2024 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验