Suppr超能文献

通过控制半导体纳米螺旋的螺旋间距显著增强发光中的圆偏振

Significant Enhancement of Circular Polarization in Light Emission through Controlling Helical Pitches of Semiconductor Nanohelices.

作者信息

Ni Ziyue, Qin Ping, Liu Hongshuai, Chen Jiafei, Cai Siyuan, Tang Wenying, Xiao Hui, Wang Chen, Qu Geping, Lin Chao, Fan Zhiyong, Xu Zong-Xiang, Li Guixin, Huang Zhifeng

机构信息

Department of Physics, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR 999077, People's Republic of China.

Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR 999077, People's Republic of China.

出版信息

ACS Nano. 2023 Oct 24;17(20):20611-20620. doi: 10.1021/acsnano.3c07663. Epub 2023 Oct 5.

Abstract

Circularly polarized light emission (CPLE) can be potentially applied to three-dimensional displays, information storage, and biometry. However, these applications are practically limited by a low purity of circular polarization, i.e., the small optical dissymmetry factor . Herein, glancing angle deposition (GLAD) is performed to produce inorganic nanohelices (NHs) to generate CPLE with large values. CdSe NHs emit red CPLE with = 0.15 at a helical pitch () ≈ 570 nm, having a 40-fold amplification of compared to that at ≈ 160 nm. Ceria NHs emit ultraviolet-blue CPLE with ≈ 0.06 at ≈ 830 nm, with a 10-fold amplification compared to that at ≈ 110 nm. Both the photoluminescence and scattering among the close-packed NHs complicatedly account for the large values, as revealed by the numerical simulations. The GLAD-based NH-fabrication platform is devised to generate CPLE with engineerable color and large = 10-10, shedding light on the commercialization of CPLE devices.

摘要

圆偏振光发射(CPLE)在三维显示、信息存储和生物测定等方面具有潜在应用价值。然而,这些应用实际上受到圆偏振纯度低的限制,即光学不对称因子较小。在此,通过掠角沉积(GLAD)制备无机纳米螺旋(NHs)以产生具有大值的CPLE。CdSe纳米螺旋在螺旋间距()≈570nm时发射红色CPLE,值为0.15,与≈160nm时相比,值放大了40倍。二氧化铈纳米螺旋在≈830nm时发射紫外-蓝色CPLE,值≈0.06,与≈110nm时相比放大了10倍。数值模拟表明,紧密堆积的纳米螺旋之间的光致发光和散射共同导致了大值。基于GLAD的纳米螺旋制造平台旨在产生具有可设计颜色且大=10-10的CPLE,为CPLE器件的商业化提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70d3/10604094/87bfc6a830a3/nn3c07663_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验