Katagiri Kento, Pikuz Tatiana, Fang Lichao, Albertazzi Bruno, Egashira Shunsuke, Inubushi Yuichi, Kamimura Genki, Kodama Ryosuke, Koenig Michel, Kozioziemski Bernard, Masaoka Gooru, Miyanishi Kohei, Nakamura Hirotaka, Ota Masato, Rigon Gabriel, Sakawa Youichi, Sano Takayoshi, Schoofs Frank, Smith Zoe J, Sueda Keiichi, Togashi Tadashi, Vinci Tommaso, Wang Yifan, Yabashi Makina, Yabuuchi Toshinori, Dresselhaus-Marais Leora E, Ozaki Norimasa
Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.
Institute of Laser Engineering, Osaka University, Suita, 565-0871, Japan.
Science. 2023 Oct 6;382(6666):69-72. doi: 10.1126/science.adh5563. Epub 2023 Oct 5.
The motion of line defects (dislocations) has been studied for more than 60 years, but the maximum speed at which they can move is unresolved. Recent models and atomistic simulations predict the existence of a limiting velocity of dislocation motion between the transonic and subsonic ranges at which the self-energy of dislocation diverges, though they do not deny the possibility of the transonic dislocations. We used femtosecond x-ray radiography to track ultrafast dislocation motion in shock-compressed single-crystal diamond. By visualizing stacking faults extending faster than the slowest sound wave speed of diamond, we show the evidence of partial dislocations at their leading edge moving transonically. Understanding the upper limit of dislocation mobility in crystals is essential to accurately model, predict, and control the mechanical properties of materials under extreme conditions.
线缺陷(位错)的运动已被研究了60多年,但它们能够移动的最大速度仍未得到解决。最近的模型和原子模拟预测,在跨音速和亚音速范围之间存在位错运动的极限速度,在这个速度下,位错的自能会发散,不过它们并不否认跨音速位错存在的可能性。我们使用飞秒X射线成像技术来追踪冲击压缩单晶金刚石中的超快位错运动。通过观察比金刚石最慢的声波速度传播得更快的堆垛层错,我们展示了部分位错在其前沿以跨音速移动的证据。了解晶体中位错迁移率的上限对于准确模拟、预测和控制极端条件下材料的力学性能至关重要。