Schall Peter, Cohen Itai, Weitz David A, Spaepen Frans
Division of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA 02138, USA.
Science. 2004 Sep 24;305(5692):1944-8. doi: 10.1126/science.1102186.
The dominant mechanism for creating large irreversible strain in atomic crystals is the motion of dislocations, a class of line defects in the crystalline lattice. Here we show that the motion of dislocations can also be observed in strained colloidal crystals, allowing detailed investigation of their topology and propagation. We describe a laser diffraction microscopy setup used to study the growth and structure of misfit dislocations in colloidal crystalline films. Complementary microscopic information at the single-particle level is obtained with a laser scanning confocal microscope. The combination of these two techniques enables us to study dislocations over a range of length scales, allowing us to determine important parameters of misfit dislocations such as critical film thickness, dislocation density, Burgers vector, and lattice resistance to dislocation motion. We identify the observed dislocations as Shockley partials that bound stacking faults of vanishing energy. Remarkably, we find that even on the scale of a few lattice vectors, the dislocation behavior is well described by the continuum approach commonly used to describe dislocations in atomic crystals.
在原子晶体中产生大的不可逆应变的主要机制是位错运动,位错是晶格中的一类线缺陷。在此我们表明,在位应变胶体晶体中也能观察到位错运动,这使得对其拓扑结构和传播进行详细研究成为可能。我们描述了一种用于研究胶体晶体薄膜中失配位错的生长和结构的激光衍射显微镜装置。利用激光扫描共聚焦显微镜可在单粒子水平上获得补充微观信息。这两种技术的结合使我们能够在一系列长度尺度上研究位错,从而能够确定失配位错的重要参数,如临界薄膜厚度、位错密度、伯格斯矢量以及晶格对位错运动的阻力。我们将观察到的位错识别为束缚着能量消失的堆垛层错的肖克莱不全位错。值得注意的是,我们发现即使在几个晶格矢量的尺度上,位错行为也能用通常用于描述原子晶体中位错的连续介质方法很好地描述。