Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.
CIBER-BBN, ISCIII, Barcelona 08028, Spain.
ACS Nano. 2023 Oct 24;17(20):20334-20344. doi: 10.1021/acsnano.3c06390. Epub 2023 Oct 5.
Charge exchange is the fundamental process that sustains cellular respiration and photosynthesis by shuttling electrons in a cascade of electron transfer (ET) steps between redox cofactors. While intraprotein charge exchange is well characterized in protein complexes bearing multiple redox sites, interprotein processes are less understood due to the lack of suitable experimental approaches and the dynamic nature of the interactions. Proteins constrained between electrodes are known to support electron transport (ETp) through the protein matrix even without redox cofactors, as the charges housed by the redox sites in ET are furnished by the electrodes. However, it is unknown whether protein ETp mechanisms apply to the interprotein medium present under physiological conditions. We study interprotein charge exchange between plant photosystem I (PSI) and its soluble redox partner plastocyanin (Pc) and address the role of the Pc copper center. Using electrochemical scanning tunneling spectroscopy (ECSTS) current-distance and blinking measurements, we quantify the spatial span of charge exchange between individual Pc/PSI pairs and ETp through transient Pc/PSI complexes. Pc devoid of the redox center (Pc) can exchange charge with PSI at longer distances than with the copper ion (Pc). Conductance bursts associated with Pc/PSI complex formation are higher than in Pc/PSI. Thus, copper ions are not required for long-distance Pc/PSI ETp but regulate its spatial span and conductance. Our results suggest that the redox center that carries the charge in Pc is not necessary to exchange it in interprotein ET through the aqueous solution and question the canonical view of tight complex binding between redox protein partners.
电荷交换是维持细胞呼吸和光合作用的基本过程,它通过在氧化还原辅助因子之间的电子转移 (ET) 步骤级联中传递电子来实现。虽然在具有多个氧化还原位点的蛋白质复合物中,蛋白质内的电荷交换已经得到很好的描述,但由于缺乏合适的实验方法和相互作用的动态性质,蛋白质间的过程了解较少。已知被电极约束的蛋白质即使没有氧化还原辅助因子,也可以通过蛋白质基质支持电子传输 (ETp),因为 ET 中氧化还原位点所包含的电荷是由电极提供的。然而,尚不清楚蛋白质 ETp 机制是否适用于生理条件下存在的蛋白质间介质。我们研究了植物光合作用系统 I (PSI) 和其可溶性氧化还原伴侣质体蓝素 (Pc) 之间的蛋白质间电荷交换,并探讨了 Pc 铜中心的作用。我们使用电化学扫描隧道光谱 (ECSTS) 电流-距离和闪烁测量技术,定量测量了单个 Pc/PSI 对之间以及通过瞬态 Pc/PSI 复合物的 ETp 之间电荷交换的空间范围。缺乏氧化还原中心的质体蓝素 (Pc) 可以在比铜离子 (Pc) 更远的距离上与 PSI 交换电荷。与 Pc/PSI 相比,与 Pc/PSI 复合物形成相关的电导突发更高。因此,铜离子不是长距离 Pc/PSI ETp 所必需的,但可以调节其空间范围和电导。我们的结果表明,在蛋白质间 ET 中,携带电荷的 Pc 氧化还原中心不需要在水溶液中交换电荷,并质疑氧化还原蛋白伴侣紧密复合物结合的经典观点。