Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany.
Biochem J. 2021 Jun 25;478(12):2371-2384. doi: 10.1042/BCJ20210267.
Photosystem I is defined as plastocyanin-ferredoxin oxidoreductase. Taking advantage of genetic engineering, kinetic analyses and cryo-EM, our data provide novel mechanistic insights into binding and electron transfer between PSI and Pc. Structural data at 2.74 Å resolution reveals strong hydrophobic interactions in the plant PSI-Pc ternary complex, leading to exclusion of water molecules from PsaA-PsaB/Pc interface once the PSI-Pc complex forms. Upon oxidation of Pc, a slight tilt of bound oxidized Pc allows water molecules to accommodate the space between Pc and PSI to drive Pc dissociation. Such a scenario is consistent with the six times larger dissociation constant of oxidized as compared with reduced Pc and mechanistically explains how this molecular machine optimized electron transfer for fast turnover.
光系统 I 被定义为质体蓝素-铁氧还蛋白氧化还原酶。利用基因工程、动力学分析和低温电镜,我们的数据为 PSI 和 Pc 之间的结合和电子转移提供了新的机制见解。2.74Å 分辨率的结构数据显示,在植物 PSI-Pc 三元复合物中存在强烈的疏水相互作用,导致 PSI-Pc 复合物形成后,从 PsaA-PsaB/Pc 界面排除水分子。在 Pc 被氧化时,结合的氧化 Pc 稍有倾斜,允许水分子适应 Pc 和 PSI 之间的空间,从而推动 Pc 解离。这种情况与氧化态 Pc 的解离常数比还原态 Pc 大六倍的情况一致,并从机制上解释了这个分子机器如何优化电子转移以实现快速周转。