Suppr超能文献

多域主动防御:在没有干净数据集的情况下,通过 ALL-to-ALL 去耦训练检测多域后门中毒样本。

Multidomain active defense: Detecting multidomain backdoor poisoned samples via ALL-to-ALL decoupling training without clean datasets.

机构信息

School of Computer Science, South-Central Min Zu University, Wuhan 430074, China.

School of Computer Science, South-Central Min Zu University, Wuhan 430074, China.

出版信息

Neural Netw. 2023 Nov;168:350-362. doi: 10.1016/j.neunet.2023.09.036. Epub 2023 Sep 25.

Abstract

Deep learning is vulnerable to backdoor poisoning attacks in which an attacker can easily embed a hidden backdoor into a trained model by injecting poisoned samples into the training set. Many prior state-of-the-art techniques for detecting backdoor poisoning attacks are based on a potential separability assumption. However, current adaptive poisoning strategies can significantly reduce 'distinguishable behavior', making most prior state-of-the-art techniques less effective. In addition, we note that existing detection methods are not practical for multidomain datasets and may leak user privacy because they require and collect clean samples. To address the above issues, we propose a multidomain active defense approach that does not use clean datasets. The proposed approach can generate diverse clean samples from different domains and decouple neural networks round by round using clean samples to disassociate features and labels, making backdoor poisoned samples easier to detect without fitting clean samples. We demonstrate the advantage of our approach through an extensive evaluation of CIFAR10, CelebA, MNIST & MNIST-M, MNIST & USPS & MNIST-M, MNIST & USPS & SVHN and CIFAR10 & Tiny-ImageNet.

摘要

深度学习容易受到后门中毒攻击的影响,攻击者可以通过向训练集中注入有毒样本,轻松地将隐藏的后门嵌入到训练好的模型中。许多之前的最先进的后门中毒攻击检测技术都是基于潜在的可分离性假设。然而,当前的自适应中毒策略可以显著降低“可区分行为”,使得大多数之前的最先进技术效果不佳。此外,我们注意到现有的检测方法不适用于多域数据集,并且可能会泄露用户隐私,因为它们需要并收集干净的样本。为了解决上述问题,我们提出了一种不使用干净数据集的多域主动防御方法。所提出的方法可以从不同的域中生成多样化的干净样本,并使用干净样本逐轮解耦神经网络,将特征和标签分离,从而更容易检测到后门中毒样本,而无需拟合干净样本。我们通过对 CIFAR10、CelebA、MNIST&MNIST-M、MNIST&USPS&MNIST-M、MNIST&USPS&SVHN 和 CIFAR10&Tiny-ImageNet 的广泛评估,展示了我们方法的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验