Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
J Biol Chem. 2023 Nov;299(11):105318. doi: 10.1016/j.jbc.2023.105318. Epub 2023 Oct 4.
Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues-a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IV, collagen IV, and collagen IV. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues. First, Cl activates a molecular switch within trimeric NC1 domains that initiates protomer oligomerization, forming an NC1 hexamer between adjoining protomers. Second, Cl stabilizes the hexamer structure. Whether this Cl-dependent mechanism is of fundamental importance in animal evolution is unknown. Here, we developed a simple in vitro method of SDS-PAGE to determine the role of solution Cl in hexamer stability. Hexamers were characterized from 34 animal species across 15 major phyla, including the basal Cnidarian and Ctenophora phyla. We found that solution Cl stabilized the quaternary hexamer structure across all phyla except Ctenophora, Ecdysozoa, and Rotifera. Further analysis of hexamers from peroxidasin knockout mice, a model for decreasing hexamer crosslinks, showed that solution Cl also stabilized the hexamer surface conformation. The presence of sufficient chloride concentration in solution or "chloride pressure" dynamically maintains the native form of the hexamer. Collectively, our findings revealed that chloride pressure on the outside of cells is a primordial innovation that drives and maintains the quaternary and conformational structure of NC1 hexamers of collagen IV scaffolds.
IV 型胶原支架是一种原始的创新,使上皮组织基本结构单元——基底膜与极化细胞附着——得以组装。由 6 条α链(α1 至 α6)组成的家族共同组装成三个不同的三聚体,形成超分子支架,被标记为 IV 型胶原、IV 型胶原和 IV 型胶原。基于对哺乳动物组织中 NC1 六聚体的研究,氯离子在支架组装中起着关键作用。首先,Cl 激活三聚体 NC1 结构域内的分子开关,启动三聚体寡聚化,在相邻三聚体之间形成 NC1 六聚体。其次,Cl 稳定六聚体结构。这种 Cl 依赖性机制在动物进化中是否具有重要意义尚不清楚。在这里,我们开发了一种简单的 SDS-PAGE 体外方法来确定溶液 Cl 在六聚体稳定性中的作用。我们从 15 个主要门的 34 个动物物种中鉴定了六聚体,包括基础的刺胞动物门和栉水母动物门。我们发现,除栉水母动物门、节肢动物门和轮形动物门外,溶液 Cl 稳定了所有门的四聚体六聚体结构。对过氧化物酶体失活敲除小鼠(一种减少六聚体交联的模型)六聚体的进一步分析表明,溶液 Cl 也稳定了六聚体表面构象。溶液中存在足够的氯离子浓度或“氯离子压力”,可以动态维持六聚体的天然形式。总的来说,我们的发现表明,细胞外的氯离子压力是一种原始的创新,它驱动并维持着 IV 型胶原支架 NC1 六聚体的四级和构象结构。