Suppr超能文献

基底膜的 IV 型胶原:IV. 果蝇 IV 型胶原支架组装的适应机制。

Collagen IV of basement membranes: IV. Adaptive mechanism of collagen IV scaffold assembly in Drosophila.

机构信息

Aspirnaut Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

School of Life Sciences, Tsinghua University, Beijing, China.

出版信息

J Biol Chem. 2023 Dec;299(12):105394. doi: 10.1016/j.jbc.2023.105394. Epub 2023 Oct 27.

Abstract

Collagen IV is an essential structural protein in all metazoans. It provides a scaffold for the assembly of basement membranes, a specialized form of extracellular matrix, which anchors and signals cells and provides microscale tensile strength. Defective scaffolds cause basement membrane destabilization and tissue dysfunction. Scaffolds are composed of α-chains that coassemble into triple-helical protomers of distinct chain compositions, which in turn oligomerize into supramolecular scaffolds. Chloride ions mediate the oligomerization via NC1 trimeric domains, forming an NC1 hexamer at the protomer-protomer interface. The chloride concentration-"chloride pressure"-on the outside of cells is a primordial innovation that drives the assembly and dynamic stabilization of collagen IV scaffolds. However, a Cl-independent mechanism is operative in Ctenophora, Ecdysozoa, and Rotifera, which suggests evolutionary adaptations to environmental or tissue conditions. An understanding of these exceptions, such as the example of Drosophila, could shed light on the fundamentals of how NC1 trimers direct the oligomerization of protomers into scaffolds. Here, we investigated the NC1 assembly of Drosophila. We solved the crystal structure of the NC1 hexamer, determined the chain composition of protomers, and found that Drosophila adapted an evolutionarily unique mechanism of scaffold assembly that requires divalent cations. By studying the Drosophila case we highlighted the mechanistic role of chloride pressure for maintaining functionality of the NC1 domain in humans. Moreover, we discovered that the NC1 trimers encode information for homing protomers to distant tissue locations, providing clues for the development of protein replacement therapy for collagen IV genetic diseases.

摘要

胶原蛋白 IV 是所有后生动物的基本结构蛋白。它为基底膜的组装提供了一个支架,基底膜是一种特殊形式的细胞外基质,它固定和信号细胞,并提供微观拉伸强度。有缺陷的支架会导致基底膜不稳定和组织功能障碍。支架由α链组成,这些α链共同组装成具有不同链组成的三聚体原纤维,这些原纤维又聚集成超分子支架。氯离子通过 NC1 三聚体结构域介导寡聚化,在原纤维-原纤维界面形成 NC1 六聚体。细胞外的氯离子浓度——“氯离子压力”——是驱动胶原蛋白 IV 支架组装和动态稳定的原始创新。然而,在栉水母、节肢动物和轮形动物中存在一种不依赖氯离子的机制,这表明存在对环境或组织条件的进化适应。对这些例外情况(如果蝇的例子)的理解,可以揭示 NC1 三聚体如何指导原纤维寡聚化成支架的基本原理。在这里,我们研究了果蝇的 NC1 组装。我们解决了 NC1 六聚体的晶体结构,确定了原纤维的链组成,并发现果蝇适应了一种独特的进化机制,这种机制需要二价阳离子。通过研究果蝇案例,我们强调了氯离子压力对维持 NC1 结构域在人类中功能的机制作用。此外,我们发现 NC1 三聚体编码了同源原纤维到遥远组织位置的信息,为胶原蛋白 IV 遗传疾病的蛋白质替代疗法的发展提供了线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c57/10694668/411a24b775bf/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验