Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
Summer Internship Program (NeuroSIP), Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
J Neurosci. 2023 Nov 15;43(46):7745-7765. doi: 10.1523/JNEUROSCI.0553-23.2023. Epub 2023 Oct 5.
Proper cortical lamination is essential for cognition, learning, and memory. Within the somatosensory cortex, pyramidal excitatory neurons elaborate axon collateral branches in a laminar-specific manner that dictates synaptic partners and overall circuit organization. Here, we leverage both male and female mouse models, single-cell labeling and imaging approaches to identify intrinsic regulators of laminar-specific collateral, also termed interstitial, axon branching. We developed new approaches for the robust, sparse, labeling of Layer II/III pyramidal neurons to obtain single-cell quantitative assessment of axon branch morphologies. We combined these approaches with cell-autonomous loss-of-function (LOF) and overexpression (OE) manipulations in an candidate screen to identify regulators of cortical neuron axon branch lamination. We identify a role for the cytoskeletal binding protein drebrin (Dbn1) in regulating Layer II/III cortical projection neuron (CPN) collateral axon branching LOF experiments show that Dbn1 is necessary to suppress the elongation of Layer II/III CPN collateral axon branches within Layer IV, where axon branching by Layer II/III CPNs is normally absent. Conversely, OE produces excess short axonal protrusions reminiscent of nascent axon collaterals that fail to elongate. Structure-function analyses implicate Dbn1 phosphorylation and Dbn1 protein domains known to mediate F-actin bundling and microtubule (MT) coupling as necessary for collateral branch initiation upon OE. Taken together, these results contribute to our understanding of the molecular mechanisms that regulate collateral axon branching in excitatory CPNs, a key process in the elaboration of neocortical circuit formation. Laminar-specific axon targeting is essential for cortical circuit formation. Here, we show that the cytoskeletal protein drebrin (Dbn1) regulates excitatory Layer II/III cortical projection neuron (CPN) collateral axon branching, lending insight into the molecular mechanisms that underlie neocortical laminar-specific innervation. To identify branching patterns of single cortical neurons , we have developed tools that allow us to obtain detailed images of individual CPN morphologies throughout postnatal development and to manipulate gene expression in these same neurons. Our results showing that Dbn1 regulates CPN interstitial axon branching both in and in may aid in our understanding of how aberrant cortical neuron morphology contributes to dysfunctions observed in autism spectrum disorder and epilepsy.
皮质的正确分层对于认知、学习和记忆至关重要。在体感皮层中,锥体兴奋性神经元以层特异性的方式形成轴突侧支分支,决定突触伙伴和整体回路组织。在这里,我们利用雄性和雌性小鼠模型、单细胞标记和成像方法来鉴定层特异性侧支分支(也称为间质)的内在调节因子。我们开发了新的方法来对 II/III 层锥体神经元进行稳健、稀疏的标记,以获得单个细胞对轴突分支形态的定量评估。我们将这些方法与细胞自主的功能丧失(LOF)和过表达(OE)操作相结合,在候选筛选中鉴定皮层神经元轴突分支分层的调节因子。我们发现细胞骨架结合蛋白 drebrin(Dbn1)在调节 II/III 层皮质投射神经元(CPN)侧支轴突分支分层中的作用。LOF 实验表明,Dbn1 是抑制 II/III 层 CPN 侧支轴突分支在 IV 层内伸长所必需的,而 II/III 层 CPN 的轴突分支通常不存在于 IV 层。相反,OE 产生过多的短轴突突起,类似于未能伸长的新生轴突侧支。结构功能分析表明,Dbn1 磷酸化和已知介导 F-肌动蛋白束和微管(MT)偶联的 Dbn1 蛋白结构域对于 OE 时侧支分支的起始是必需的。总的来说,这些结果有助于我们理解调节兴奋性 CPN 侧支轴突分支的分子机制,这是新皮层回路形成的关键过程。层特异性轴突靶向对于皮层回路形成至关重要。在这里,我们表明细胞骨架蛋白 drebrin(Dbn1)调节兴奋性 II/III 层皮质投射神经元(CPN)侧支轴突分支,深入了解了支配新皮层层特异性神经支配的分子机制。为了鉴定单个皮质神经元的分支模式,我们开发了工具,使我们能够在整个出生后发育过程中获得单个 CPN 形态的详细图像,并在这些相同的神经元中操纵基因表达。我们的结果表明,Dbn1 调节 CPNS 间质轴突分支在 和 中,这可能有助于我们理解异常皮质神经元形态如何导致自闭症谱系障碍和癫痫中观察到的功能障碍。