Suppr超能文献

Cited2调节新皮质第II/III层的生成以及体感胼胝体投射神经元的发育和连接。

Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity.

作者信息

Fame Ryann M, MacDonald Jessica L, Dunwoodie Sally L, Takahashi Emi, Macklis Jeffrey D

机构信息

Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138.

Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, 2052 Australia, Faculties of Medicine and Science, University of New South Wales, Kensington, Sydney, New South Wales, 2052 Australia.

出版信息

J Neurosci. 2016 Jun 15;36(24):6403-19. doi: 10.1523/JNEUROSCI.4067-15.2016.

Abstract

UNLABELLED

The neocortex contains hundreds to thousands of distinct subtypes of precisely connected neurons, allowing it to perform remarkably complex tasks of high-level cognition. Callosal projection neurons (CPN) connect the cerebral hemispheres via the corpus callosum, integrating cortical information and playing key roles in associative cognition. CPN are a strikingly diverse set of neuronal subpopulations, and development of this diversity requires precise control by a complex, interactive set of molecular effectors. We have found that the transcriptional coregulator Cited2 regulates and refines two stages of CPN development. Cited2 is expressed broadly by progenitors in the embryonic day 15.5 subventricular zone, during the peak of superficial layer CPN birth, with a progressive postmitotic refinement in expression, becoming restricted to CPN of the somatosensory cortex postnatally. We generated progenitor-stage and postmitotic forebrain-specific Cited2 conditional knock-out mice, using the Emx1-Cre and NEX-Cre mouse lines, respectively. We demonstrate that Cited2 functions in progenitors, but is not necessary postmitotically, to regulate both (1) broad generation of layer II/III CPN and (2) acquisition of precise area-specific molecular identity and axonal/dendritic connectivity of somatosensory CPN. This novel CPN subtype-specific and area-specific control from progenitor action of Cited2 adds yet another layer of complexity to the multistage developmental regulation of neocortical development.

SIGNIFICANCE STATEMENT

This study identifies Cited2 as a novel subtype-specific and area-specific control over development of distinct subpopulations within the broad population of callosal projection neurons (CPN), whose axons connect the two cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We found that Cited2 functions within subventricular zone progenitors to both broadly regulate generation of superficial layer CPN throughout the neocortex, and to refine precise area-specific development and connectivity of somatosensory CPN. Gaining insight into molecular development and heterogeneity of CPN will advance understanding of both diverse functions of CPN and of the remarkable range of neurodevelopmental deficits correlated with CPN/CC development.

摘要

未标注

新皮质包含数百到数千种精确连接的神经元亚型,使其能够执行极其复杂的高级认知任务。胼胝体投射神经元(CPN)通过胼胝体连接大脑半球,整合皮质信息并在联想认知中发挥关键作用。CPN是一组极为多样的神经元亚群,这种多样性的发育需要一组复杂的、相互作用的分子效应器进行精确控制。我们发现转录共调节因子Cited2调节和完善CPN发育的两个阶段。Cited2在胚胎第15.5天的脑室下区广泛由祖细胞表达,此时正是浅层CPN产生的高峰期,其表达在有丝分裂后逐渐细化,出生后局限于体感皮质的CPN。我们分别使用Emx1-Cre和NEX-Cre小鼠品系,生成了祖细胞阶段和有丝分裂后前脑特异性Cited2条件性敲除小鼠。我们证明Cited2在祖细胞中发挥作用,但在有丝分裂后并非必需,以调节:(1)广泛产生II/III层CPN;(2)获得体感CPN精确的区域特异性分子特性以及轴突/树突连接性。Cited2从祖细胞作用对CPN进行的这种新的亚型特异性和区域特异性控制,为新皮质发育的多阶段发育调节增添了另一层复杂性。

意义声明

本研究确定Cited2是对胼胝体投射神经元(CPN)广泛群体中不同亚群发育的一种新的亚型特异性和区域特异性控制,其轴突通过胼胝体(CC)连接两个大脑半球。目前,CPN亚型的显著多样性是如何确定的,以及它们如何分化形成高度精确和特异的回路,在很大程度上尚不清楚。我们发现Cited2在脑室下区祖细胞内发挥作用,既广泛调节整个新皮质浅层CPN的产生,又完善体感CPN精确的区域特异性发育和连接性。深入了解CPN的分子发育和异质性将促进对CPN的多种功能以及与CPN/CC发育相关的广泛神经发育缺陷的理解。

相似文献

3
Atypical Neocortical Development in the Cited2 Conditional Knockout Leads to Behavioral Deficits Associated with Neurodevelopmental Disorders.
Neuroscience. 2021 Feb 10;455:65-78. doi: 10.1016/j.neuroscience.2020.12.009. Epub 2020 Dec 17.
4
Lmo4 establishes rostral motor cortex projection neuron subtype diversity.
J Neurosci. 2013 Apr 10;33(15):6321-32. doi: 10.1523/JNEUROSCI.5140-12.2013.
6
Mllt11 Regulates Migration and Neurite Outgrowth of Cortical Projection Neurons during Development.
J Neurosci. 2022 May 11;42(19):3931-3948. doi: 10.1523/JNEUROSCI.0124-22.2022. Epub 2022 Apr 4.
8
Lmo4 and Clim1 progressively delineate cortical projection neuron subtypes during development.
Cereb Cortex. 2009 Jul;19 Suppl 1(Suppl 1):i62-9. doi: 10.1093/cercor/bhp030. Epub 2009 Apr 14.
9
Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons.
J Neurosci. 2009 Sep 30;29(39):12343-54. doi: 10.1523/JNEUROSCI.6108-08.2009.
10
Distinct actions of Emx1, Emx2, and Pax6 in regulating the specification of areas in the developing neocortex.
J Neurosci. 2002 Sep 1;22(17):7627-38. doi: 10.1523/JNEUROSCI.22-17-07627.2002.

引用本文的文献

1
Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases.
Signal Transduct Target Ther. 2023 Nov 13;8(1):427. doi: 10.1038/s41392-023-01651-w.
3
Ankyrin B promotes developmental spine regulation in the mouse prefrontal cortex.
Cereb Cortex. 2023 Oct 9;33(20):10634-10648. doi: 10.1093/cercor/bhad311.
5
miR-409-3p represses to refine neocortical layer V projection neuron identity.
Front Neurosci. 2022 Sep 29;16:931333. doi: 10.3389/fnins.2022.931333. eCollection 2022.
6
Doublecortin-Like Kinase 1 Facilitates Dendritic Spine Growth of Pyramidal Neurons in Mouse Prefrontal Cortex.
Neuroscience. 2023 Jan 1;508:98-109. doi: 10.1016/j.neuroscience.2022.08.020. Epub 2022 Sep 3.
7
Structural and Functional Aspects of the Neurodevelopmental Gene : From Animal Models to Human Pathology.
Front Mol Neurosci. 2021 Dec 15;14:767965. doi: 10.3389/fnmol.2021.767965. eCollection 2021.
10
Expression of human-specific ARHGAP11B in mice leads to neocortex expansion and increased memory flexibility.
EMBO J. 2021 Jul 1;40(13):e107093. doi: 10.15252/embj.2020107093. Epub 2021 May 3.

本文引用的文献

1
Balanced interhemispheric cortical activity is required for correct targeting of the corpus callosum.
Neuron. 2014 Jun 18;82(6):1289-98. doi: 10.1016/j.neuron.2014.04.040.
2
Asymmetry of White Matter Pathways in Developing Human Brains.
Cereb Cortex. 2015 Sep;25(9):2883-93. doi: 10.1093/cercor/bhu084. Epub 2014 May 8.
4
Molecular logic of neocortical projection neuron specification, development and diversity.
Nat Rev Neurosci. 2013 Nov;14(11):755-69. doi: 10.1038/nrn3586. Epub 2013 Oct 9.
5
BAF chromatin remodeling complex: cortical size regulation and beyond.
Cell Cycle. 2013 Sep 15;12(18):2953-9. doi: 10.4161/cc.25999. Epub 2013 Aug 13.
6
Axon position within the corpus callosum determines contralateral cortical projection.
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):E2714-23. doi: 10.1073/pnas.1310233110. Epub 2013 Jun 28.
7
Triple bioluminescence imaging for in vivo monitoring of cellular processes.
Mol Ther Nucleic Acids. 2013 Jun 18;2(6):e99. doi: 10.1038/mtna.2013.25.
8
Lmo4 establishes rostral motor cortex projection neuron subtype diversity.
J Neurosci. 2013 Apr 10;33(15):6321-32. doi: 10.1523/JNEUROSCI.5140-12.2013.
9
Cited2 in hematopoietic stem cell function.
Curr Opin Hematol. 2013 Jul;20(4):301-7. doi: 10.1097/MOH.0b013e3283606022.
10
CITED2 functions as a molecular switch of cytokine-induced proliferation and quiescence.
Cell Death Differ. 2012 Dec;19(12):2015-28. doi: 10.1038/cdd.2012.91. Epub 2012 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验