Suppr超能文献

机器学习在血脂异常个体化预测指标中的应用:一项队列研究。

A machine learning approach to personalized predictors of dyslipidemia: a cohort study.

机构信息

Researcher for Mexico CONAHCYT, National Council of Humanities Sciences, and Technologies, Mexico City, Mexico.

Clinical Research, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico.

出版信息

Front Public Health. 2023 Sep 20;11:1213926. doi: 10.3389/fpubh.2023.1213926. eCollection 2023.

Abstract

INTRODUCTION

Mexico ranks second in the global prevalence of obesity in the adult population, which increases the probability of developing dyslipidemia. Dyslipidemia is closely related to cardiovascular diseases, which are the leading cause of death in the country. Therefore, developing tools that facilitate the prediction of dyslipidemias is essential for prevention and early treatment.

METHODS

In this study, we utilized a dataset from a Mexico City cohort consisting of 2,621 participants, men and women aged between 20 and 50 years, with and without some type of dyslipidemia. Our primary objective was to identify potential factors associated with different types of dyslipidemia in both men and women. Machine learning algorithms were employed to achieve this goal. To facilitate feature selection, we applied the Variable Importance Measures (VIM) of Random Forest (RF), XGBoost, and Gradient Boosting Machine (GBM). Additionally, to address class imbalance, we employed Synthetic Minority Over-sampling Technique (SMOTE) for dataset resampling. The dataset encompassed anthropometric measurements, biochemical tests, dietary intake, family health history, and other health parameters, including smoking habits, alcohol consumption, quality of sleep, and physical activity.

RESULTS

Our results revealed that the VIM algorithm of RF yielded the most optimal subset of attributes, closely followed by GBM, achieving a balanced accuracy of up to 80%. The selection of the best subset of attributes was based on the comparative performance of classifiers, evaluated through balanced accuracy, sensitivity, and specificity metrics.

DISCUSSION

The top five features contributing to an increased risk of various types of dyslipidemia were identified through the machine learning technique. These features include body mass index, elevated uric acid levels, age, sleep disorders, and anxiety. The findings of this study shed light on significant factors that play a role in dyslipidemia development, aiding in the early identification, prevention, and treatment of this condition.

摘要

简介

墨西哥成年人肥胖的全球患病率排名第二,这增加了血脂异常的发病概率。血脂异常与心血管疾病密切相关,而心血管疾病是该国的主要死亡原因。因此,开发有助于预测血脂异常的工具对于预防和早期治疗至关重要。

方法

在这项研究中,我们利用了来自墨西哥城队列的一个数据集,该数据集包含 2621 名年龄在 20 至 50 岁之间的男性和女性参与者,他们患有或不患有某种类型的血脂异常。我们的主要目标是确定与男性和女性不同类型血脂异常相关的潜在因素。我们使用机器学习算法来实现这一目标。为了便于特征选择,我们应用了随机森林 (RF)、XGBoost 和梯度提升机 (GBM) 的变量重要性度量 (VIM)。此外,为了解决类别不平衡问题,我们对数据集进行了重新采样,采用了合成少数过采样技术 (SMOTE)。该数据集包含了人体测量学测量、生化测试、饮食摄入、家族健康史和其他健康参数,包括吸烟习惯、饮酒量、睡眠质量和身体活动。

结果

我们的结果表明,RF 的 VIM 算法产生了最优化的属性子集,紧随其后的是 GBM,达到了高达 80%的平衡准确率。最佳属性子集的选择是基于分类器的比较性能,通过平衡准确率、敏感性和特异性指标进行评估。

讨论

通过机器学习技术,确定了导致各种类型血脂异常风险增加的前五个特征。这些特征包括体重指数、尿酸水平升高、年龄、睡眠障碍和焦虑。本研究的结果揭示了在血脂异常发展中起重要作用的显著因素,有助于早期识别、预防和治疗这种疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/311d/10548235/a19b2a031a41/fpubh-11-1213926-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验