Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China.
Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.
Aging (Albany NY). 2023 Oct 5;15(19):10389-10406. doi: 10.18632/aging.205084.
Alzheimer's disease (AD) is a neurodegenerative condition causing cognitive decline. Oxidative stress (OS) is believed to contribute to neuronal death and dysfunction in AD. We conducted a study to identify differentially expressed OS-related genes (DEOSGs) through bioinformatics analysis and experimental validation, aiming to develop a diagnostic model for AD. We analyzed the GSE33000 dataset to identify OS regulator expression profiles and create molecular clusters (C1 and C2) associated with immune cell infiltration using 310 AD samples. Cluster analysis revealed significant heterogeneity in immune infiltration. The 'WGCNA' algorithm identified cluster-specific and disease-specific differentially expressed genes (DGEs). Four machine learning models (random forest (RF), support vector machine (SVM), generalized linear model (GLM) and extreme gradient boosting (XGB)) were compared, with GLM performing the best (AUC = 0.812). Five DEOSGs (NFKBIA, PLCE1, CLIC1, SLCO4A1, TRAF3IP2) were identified based on the GLM model. AD subtype prediction accuracy was validated using nomograms and calibration curves. External datasets (GSE122063 and GSE106241) confirmed the expression levels and clinical significance of important genes. Experimental validation through RT-qPCR showed increased expression of NFKBIA, CLIC1, SLCO4A1, TRAF3IP2, and decreased expression of PLCE1 in the temporal cortex of AD mice. This study provides insights for AD research and treatment, particularly focusing on the five model-related DEOSGs.
阿尔茨海默病(AD)是一种神经退行性疾病,导致认知能力下降。氧化应激(OS)被认为是 AD 中神经元死亡和功能障碍的原因。我们通过生物信息学分析和实验验证进行了一项研究,旨在确定差异表达的 OS 相关基因(DEOSGs),以开发 AD 的诊断模型。我们分析了 GSE33000 数据集,以确定 OS 调节剂表达谱,并使用 310 个 AD 样本创建与免疫细胞浸润相关的分子簇(C1 和 C2)。聚类分析显示免疫浸润存在显著异质性。'WGCNA'算法确定了簇特异性和疾病特异性差异表达基因(DGEs)。比较了四种机器学习模型(随机森林(RF)、支持向量机(SVM)、广义线性模型(GLM)和极端梯度提升(XGB)),GLM 表现最佳(AUC = 0.812)。基于 GLM 模型,确定了五个 DEOSGs(NFKBIA、PLCE1、CLIC1、SLCO4A1、TRAF3IP2)。使用列线图和校准曲线验证了 AD 亚型预测的准确性。外部数据集(GSE122063 和 GSE106241)证实了重要基因的表达水平和临床意义。通过 RT-qPCR 的实验验证显示 AD 小鼠颞叶中 NFKBIA、CLIC1、SLCO4A1、TRAF3IP2 的表达增加,PLCE1 的表达降低。本研究为 AD 研究和治疗提供了新的思路,特别是针对五个模型相关的 DEOSGs。