Suppr超能文献

公众对碳捕获、利用与封存(CCUS)的认知风险和收益:量表开发与验证

Public perceived risks and benefits of carbon capture, utilization, and storage (CCUS): Scale development and validation.

作者信息

Xu Yinghua, Liu Bingsheng, Chen Yuan, Lu Shijian

机构信息

College of Management and Economics, Tianjin University, Tianjin, 300072, China.

Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, 221008, China.

出版信息

J Environ Manage. 2023 Dec 1;347:119109. doi: 10.1016/j.jenvman.2023.119109. Epub 2023 Oct 4.

Abstract

As a critical technology to mitigate climate change, the large-scale implementation of carbon capture, utilization, and storage (CCUS) depends on both technological advancement and public acceptance, which is significantly influenced by the perceived risks and benefits. Existing studies, however, have yet to reach a consensus regarding the measurement of CCUS in these two aspects. To fill this gap, this paper develops and validates new scales based on four studies. Specifically, Study 1 generates the initial item pool based on a literature review and semi-structured interviews, and then invites experts to examine the content validity of these items; Study 2 identifies the dimensions and assesses the reliability and validity of the measures through an exploratory and confirmatory factor analysis; Study 3 conducts a one-way ANOVA to test known-group validity; and Study 4 employed structural equation modeling to evaluate the nomological validity. The results demonstrate the internal consistency, reliability, and construct validity of the new scales developed to measure CCUS. This study provides a valuable tool for investigating public perceptions of CCUS and can help policymakers develop future publicity strategies.

摘要

作为缓解气候变化的一项关键技术,碳捕获、利用与封存(CCUS)的大规模实施既依赖技术进步,也取决于公众接受度,而公众接受度会受到感知风险和收益的显著影响。然而,现有研究在这两个方面对CCUS的衡量尚未达成共识。为填补这一空白,本文基于四项研究开发并验证了新的量表。具体而言,研究1基于文献综述和半结构化访谈生成初始项目池,然后邀请专家检验这些项目的内容效度;研究2通过探索性和验证性因素分析确定维度并评估测量的信度和效度;研究3进行单因素方差分析以检验已知群体效度;研究4采用结构方程模型评估理论效度。结果证明了所开发的用于测量CCUS的新量表的内部一致性、信度和结构效度。本研究为调查公众对CCUS的认知提供了一个有价值的工具,并有助于政策制定者制定未来的宣传策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验