CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China.
CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China.
Water Res. 2023 Nov 1;246:120681. doi: 10.1016/j.watres.2023.120681. Epub 2023 Sep 29.
The synergistic effect of protein-silica complexation leads to exacerbated membrane fouling in the membrane desalination process, exceeding the individual impacts of silica scaling or protein fouling. However, the molecular-level dynamics of silica binding to proteins and the resulting structural changes in both proteins and silica remain poorly understood. This study investigates the complexation process between silica and proteins-negatively charged bovine serum albumin (BSA) and positively charged lysozyme (LYZ) at neutral pH-using infrared spectroscopy (IR), in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and multiple computational simulations. The findings reveal that both protein and silica structures undergo changes during the complexation process, with calcium ions in the solution significantly exacerbating these alterations. In particular, in situ ATR-FTIR combined with two-dimensional correlation spectroscopy analysis shows that BSA experiences more pronounced unfolding, providing additional binding sites for silica adsorption compared to LYZ. The adsorbed proteins promote silica polymerization from lower-polymerized to higher-polymerized species. Furthermore, molecular dynamics simulations demonstrate greater conformational variation in BSA through root-mean-square-deviation analysis and the bridging role of calcium ions via mean square displacement analysis. Molecular docking and density functional theory calculations identify the binding sites and energy of silica on proteins. In summary, this research offers a comprehensive understanding of the protein-silica complexation process, contributing to the knowledge of synergistic behaviors of inorganic scaling and organic fouling on membrane surfaces. The integrated approach used here may also be applicable for exploring other complex complexation processes in various environments.
蛋白质-硅复合物的协同效应导致膜脱盐过程中膜污染加剧,超过了硅垢或蛋白质污染的单独影响。然而,硅与蛋白质结合的分子水平动力学以及蛋白质和硅的结构变化仍知之甚少。本研究使用红外光谱(IR)、原位衰减全反射傅里叶变换红外光谱(ATR-FTIR)和多种计算模拟,研究了中性 pH 下带负电荷的牛血清白蛋白(BSA)和带正电荷的溶菌酶(LYZ)与硅之间的复合物形成过程。研究结果表明,在复合物形成过程中,蛋白质和硅的结构都发生了变化,溶液中的钙离子显著加剧了这些变化。特别是,原位 ATR-FTIR 结合二维相关光谱分析表明,BSA 的展开程度更大,与 LYZ 相比,为硅吸附提供了更多的结合位点。吸附的蛋白质促进了硅从低聚合态到高聚合态的聚合。此外,通过均方根偏差分析和通过均方根位移分析确定钙离子的桥接作用,分子动力学模拟表明 BSA 的构象变化更大。分子对接和密度泛函理论计算确定了硅在蛋白质上的结合位点和能量。总之,本研究全面了解了蛋白质-硅复合物形成过程,有助于认识膜表面无机结垢和有机污染的协同行为。这里使用的综合方法也可能适用于探索其他复杂环境中的复杂复合物形成过程。