Khare Smith Kashiram, Gadre Vikram M, Acharya Rajendra
Electrical and Computers, Aarhus Universitet, Finlandsgade 22, Aarhus N, Aarhus, 8200, DENMARK.
Electrical Engineering Department, IIT Bombay, Powai, Bombay, India, Mumbai, Maharashtra, 400076, INDIA.
Physiol Meas. 2023 Oct 6. doi: 10.1088/1361-6579/ad00ff.
\textbf{Background:} Psychiatric disorders such as schizophrenia (SCZ), bipolar disorder (BD), and depression (DPR) are one of the leading causes of disability and suicide worldwide. The signs and symptoms of SCZ, BD, and DPR vary dynamically and do not have uniform detection strategies. The main causes of delays in the detection of psychiatric disorders are negligence by immediate caregivers, varying symptoms, stigma and limited availability of physiological signals. \textbf{Motivation:} The brain functionality in the patients with SCZ, BD, and DPR changes compared to the normal cognition population. The brain-heart interaction plays a crucial role to track the changes in cardiac activities during such disorders. Therefore, this paper explores the application of electrocardiogram (ECG) signals for the detection of three psychiatric (SCZ, BD, and DPR) disorders. \textbf{Method:} This paper develops ECGPsychNet an ensemble decomposition and classification technique for the automated detection of SCZ, BD, and DPR using ECG signals. Three well-known decomposition techniques empirical mode decomposition, variational mode decomposition, and tunable Q wavelet transform (TQWT) are used to decompose the ECG signals in to various subbands(SBs). Various features are extracted from the different SBs and classified using optimizable ensemble techniques using two validation techniques. \textbf{Results:} The developed ECGPsychNet has obtained the highest classification accuracy of 98.15% using the features from the sixth SB of TQWT. Our proposed model has the highest detection rate of 98.96%, 96.04%, and 95.12% for SCZ, DPR, and BD. \textbf{Conclusions:} Our developed prototype is able to detect SCZ, DPR and BD using ECG signals. However, the automated ECGPsychNet is ready to be tested with more dataset belonging to different races and age groups.
背景:精神分裂症(SCZ)、双相情感障碍(BD)和抑郁症(DPR)等精神疾病是全球致残和自杀的主要原因之一。SCZ、BD和DPR的体征和症状动态变化,且没有统一的检测策略。精神疾病检测延迟的主要原因包括直接护理人员的疏忽、症状多样、污名化以及生理信号获取受限。
动机:与正常认知人群相比,SCZ、BD和DPR患者的大脑功能发生了变化。在这些疾病中,脑心相互作用对于追踪心脏活动的变化起着至关重要的作用。因此,本文探讨了心电图(ECG)信号在三种精神疾病(SCZ、BD和DPR)检测中的应用。
方法:本文开发了ECGPsychNet,这是一种用于使用ECG信号自动检测SCZ、BD和DPR的集成分解和分类技术。使用三种著名的分解技术,即经验模态分解、变分模态分解和可调Q小波变换(TQWT),将ECG信号分解为各个子带(SBs)。从不同的子带中提取各种特征,并使用两种验证技术通过可优化的集成技术进行分类。
结果:所开发的ECGPsychNet使用TQWT第六个子带的特征获得了98.15%的最高分类准确率。我们提出的模型对SCZ、DPR和BD的最高检测率分别为98.96%、96.04%和95.12%。
结论:我们开发的原型能够使用ECG信号检测SCZ、DPR和BD。然而,自动化的ECGPsychNet准备好使用更多来自不同种族和年龄组的数据集进行测试。