Suppr超能文献

Cardioish:用于心电图信号的基于导联的特征提取

Cardioish: Lead-Based Feature Extraction for ECG Signals.

作者信息

Tuncer Turker, Baig Abdul Hafeez, Aydemir Emrah, Kivrak Tarik, Tuncer Ilknur, Tasci Gulay, Dogan Sengul

机构信息

Department of Digital Forensics Engineering, Technology Faculty, Firat University, 23200 Elazig, Turkey.

School of Management and Enterprise, University of Southern Queensland, Toowoomba, QLD 4350, Australia.

出版信息

Diagnostics (Basel). 2024 Nov 30;14(23):2712. doi: 10.3390/diagnostics14232712.

Abstract

Electrocardiography (ECG) signals are commonly used to detect cardiac disorders, with 12-lead ECGs being the standard method for acquiring these signals. The primary objective of this research is to propose a new feature engineering model that achieves both high classification accuracy and explainable results using ECG signals. To this end, a symbolic language, named Cardioish, has been introduced. In this research, two publicly available datasets were used: (i) a mental disorder classification dataset and (ii) a myocardial infarction (MI) dataset. These datasets contain ECG beats and include 4 and 11 classes, respectively. To obtain explainable results from these ECG signal datasets, a new explainable feature engineering (XFE) model has been proposed. The Cardioish-based XFE model consists of four main phases: (i) lead transformation and transition table feature extraction, (ii) iterative neighborhood component analysis (INCA) for feature selection, (iii) classification, and (iv) explainable results generation using the recommended Cardioish. In the feature extraction phase, the lead transformer converts ECG signals into lead indexes. To extract features from the transformed signals, a transition table-based feature extractor is applied, resulting in 144 features (12 × 12) from each ECG signal. In the feature selection phase, INCA is used to select the most informative features from the 144 generated, which are then classified using the k-nearest neighbors (kNN) classifier. The final phase is the explainable artificial intelligence (XAI) phase. In this phase, Cardioish symbols are created, forming a Cardioish sentence. By analyzing the extracted sentence, XAI results are obtained. Additionally, these results can be integrated into connectome theory for applications in cardiology. The presented Cardioish-based XFE model achieved over 99% classification accuracy on both datasets. Moreover, the XAI results related to these disorders have been presented in this research. The recommended Cardioish-based XFE model achieved high classification performance for both datasets and provided explainable results. In this regard, our proposal paves a new way for ECG classification and interpretation.

摘要

心电图(ECG)信号常用于检测心脏疾病,12导联心电图是获取这些信号的标准方法。本研究的主要目标是提出一种新的特征工程模型,该模型使用心电图信号实现高分类准确率和可解释的结果。为此,引入了一种名为Cardioish的符号语言。在本研究中,使用了两个公开可用的数据集:(i)一个精神障碍分类数据集和(ii)一个心肌梗死(MI)数据集。这些数据集包含心电图搏动,分别包括4个和11个类别。为了从这些心电图信号数据集中获得可解释的结果,提出了一种新的可解释特征工程(XFE)模型。基于Cardioish的XFE模型由四个主要阶段组成:(i)导联变换和转移表特征提取,(ii)用于特征选择的迭代邻域成分分析(INCA),(iii)分类,以及(iv)使用推荐的Cardioish生成可解释的结果。在特征提取阶段,导联变换器将心电图信号转换为导联索引。为了从变换后的信号中提取特征,应用了基于转移表的特征提取器,每个心电图信号产生144个特征(12×12)。在特征选择阶段,INCA用于从生成的144个特征中选择最具信息性的特征,然后使用k近邻(kNN)分类器进行分类。最后一个阶段是可解释人工智能(XAI)阶段。在这个阶段,创建Cardioish符号,形成一个Cardioish句子。通过分析提取的句子,获得XAI结果。此外,这些结果可以整合到连接组理论中,用于心脏病学应用。所提出的基于Cardioish的XFE模型在两个数据集上均实现了超过99%的分类准确率。此外,本研究还展示了与这些疾病相关的XAI结果。推荐的基于Cardioish的XFE模型在两个数据集上均实现了高分类性能,并提供了可解释的结果。在这方面,我们的提议为心电图分类和解释开辟了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1426/11640406/cc68157f7143/diagnostics-14-02712-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验