Suppr超能文献

一种用于精神分裂症诊断的自学习分解与分类模型。

A self-learned decomposition and classification model for schizophrenia diagnosis.

机构信息

Electronics and Communication Discipline, Indian Institute of Information Technology Design and Manufacturing, Jabalpur, MP, 482005, India.

Electronics and Communication Discipline, Indian Institute of Information Technology Design and Manufacturing, Jabalpur, MP, 482005, India.

出版信息

Comput Methods Programs Biomed. 2021 Nov;211:106450. doi: 10.1016/j.cmpb.2021.106450. Epub 2021 Oct 2.

Abstract

BACKGROUND

Schizophrenia (SZ) is a type of neurological disorder that is diagnosed by professional psychiatrists based on interviews and manual screening of patients. The procedures are time-consuming, burdensome, and prone to human error. This urgently necessitates the development of an effective and precise computer-aided design for the detection of SZ. One such efficient source for SZ detection is the electroencephalogram (EEG) signals. Because EEG signals are non-stationary, it is challenging to find representative information in its raw form. Decomposing the signals into multi-modes can provide detailed insight information from it. But the choice of uniform decomposition and hyper-parameters leads to information loss affecting system performance drastically.

METHOD

In this paper, automatic signal decomposition and classification methods are proposed for the detection of SZ and healthy control EEG signals. The Fisher score method is used for the selection of the most discriminant channel. Flexible tunable Q wavelet transform (F-TQWT) is developed for efficient decomposition of EEG signals by reducing root mean square error with grey wolf optimization (GWO) algorithm. Five features are extracted from the adaptively generated subbands and selected by the Kruskal Wallis test. The feature matrix is given as an input to the flexible least square support vector machine (F-LSSVM) classifier. The hyper-parameters and kernel of classifier are selected such that the accuracy of each subband is maximized using GWO algorithm.

RESULTS

The effectiveness and superiority of the proposed method is tested by evaluating seven performance parameters. An accuracy of 91.39%, sensitivity, specificity, precision, F-1 measure, false positive rate and error of 92.65%, 93.22%, 95.57%, 0.9306, 6.78% and 8.61% is achieved. The results prove superiority of the developed F-TQWT decomposition and F-LSSVM classifier over existing methodologies.

CONCLUSION

The EEG signals of healthy control and SZ subjects performing motor and auditory tasks simultaneously provide higher discrimination ability over the subjects performing auditory and motory tasks separately. The developed model is accurate, robust, and effective as it is developed on a relatively larger data-set, obtained maximum performance, and tested using ten-fold cross-validation technique. This proposed model is ready to be put to test for real-time SZ detection.

摘要

背景

精神分裂症(SZ)是一种由专业精神科医生通过访谈和对患者进行手动筛查来诊断的神经障碍。这些程序既耗时又繁琐,容易出现人为错误。因此,迫切需要开发一种有效的、精确的计算机辅助设计来检测 SZ。检测 SZ 的一种有效方法是脑电图(EEG)信号。由于 EEG 信号是非平稳的,因此很难从原始形式中找到有代表性的信息。将信号分解成多个模式可以提供更详细的信息。但是,统一分解和超参数的选择会导致信息丢失,从而极大地影响系统性能。

方法

本文提出了一种用于检测 SZ 和健康对照组 EEG 信号的自动信号分解和分类方法。Fisher 得分法用于选择最具判别力的通道。通过灰狼优化(GWO)算法,提出了灵活可调 Q 小波变换(F-TQWT)来有效地分解 EEG 信号,从而降低均方根误差。从自适应生成的子带中提取五个特征,并通过克鲁斯卡尔-沃利斯检验进行选择。将特征矩阵作为输入提供给灵活最小二乘支持向量机(F-LSSVM)分类器。使用 GWO 算法选择分类器的超参数和核,以使每个子带的精度最大化。

结果

通过评估七个性能参数来测试所提出方法的有效性和优越性。达到了 91.39%的准确率、92.65%的灵敏度、93.22%的特异性、95.57%的精确度、0.9306 的 F1 度量、6.78%的假阳性率和 8.61%的错误率。结果证明,与现有的方法相比,所开发的 F-TQWT 分解和 F-LSSVM 分类器具有优越性。

结论

同时进行运动和听觉任务的健康对照组和 SZ 受试者的 EEG 信号比分别进行听觉和运动任务的受试者具有更高的判别能力。所开发的模型是准确、稳健和有效的,因为它是在相对较大的数据集上开发的,获得了最大的性能,并使用十折交叉验证技术进行了测试。这个提出的模型已经准备好进行实时 SZ 检测的测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验