Suppr超能文献

基于对接增强生成建模的 HIt 发现(HIDDEN GEM):一种用于加速超大规模化学库虚拟筛选的新型计算工作流程。

HIt Discovery using docking ENriched by GEnerative Modeling (HIDDEN GEM): A novel computational workflow for accelerated virtual screening of ultra-large chemical libraries.

机构信息

UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.

出版信息

Mol Inform. 2024 Jan;43(1):e202300207. doi: 10.1002/minf.202300207. Epub 2023 Dec 19.

Abstract

Recent rapid expansion of make-on-demand, purchasable, chemical libraries comprising dozens of billions or even trillions of molecules has challenged the efficient application of traditional structure-based virtual screening methods that rely on molecular docking. We present a novel computational methodology termed HIDDEN GEM (HIt Discovery using Docking ENriched by GEnerative Modeling) that greatly accelerates virtual screening. This workflow uniquely integrates machine learning, generative chemistry, massive chemical similarity searching and molecular docking of small, selected libraries in the beginning and the end of the workflow. For each target, HIDDEN GEM nominates a small number of top-scoring virtual hits prioritized from ultra-large chemical libraries. We have benchmarked HIDDEN GEM by conducting virtual screening campaigns for 16 diverse protein targets using Enamine REAL Space library comprising 37 billion molecules. We show that HIDDEN GEM yields the highest enrichment factors as compared to state of the art accelerated virtual screening methods, while requiring the least computational resources. HIDDEN GEM can be executed with any docking software and employed by users with limited computational resources.

摘要

最近,按需制造、可购买的数十亿甚至数万亿分子的化学库的快速扩张,对依赖分子对接的传统基于结构的虚拟筛选方法的有效应用提出了挑战。我们提出了一种新的计算方法,称为 HIDDEN GEM(使用通过生成模型增强的对接进行命中发现),它大大加快了虚拟筛选的速度。该工作流程独特地将机器学习、生成化学、大规模化学相似性搜索和小分子库的分子对接整合在工作流程的开始和结束。对于每个目标,HIDDEN GEM 从超大型化学库中提名一小部分得分最高的虚拟命中。我们通过使用包含 370 亿个分子的 Enamine REAL Space 库对 16 个不同的蛋白质靶标进行虚拟筛选活动来对 HIDDEN GEM 进行基准测试。与最先进的加速虚拟筛选方法相比,HIDDEN GEM 产生了最高的富集因子,同时所需的计算资源最少。HIDDEN GEM 可以与任何对接软件一起执行,并且可以由计算资源有限的用户使用。

相似文献

2
Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking.
Nat Protoc. 2022 Mar;17(3):672-697. doi: 10.1038/s41596-021-00659-2. Epub 2022 Feb 4.
3
Deep Learning with Geometry-Enhanced Molecular Representation for Augmentation of Large-Scale Docking-Based Virtual Screening.
J Chem Inf Model. 2023 Nov 13;63(21):6501-6514. doi: 10.1021/acs.jcim.3c01371. Epub 2023 Oct 26.
4
Machine Learning-Boosted Docking Enables the Efficient Structure-Based Virtual Screening of Giga-Scale Enumerated Chemical Libraries.
J Chem Inf Model. 2023 Sep 25;63(18):5773-5783. doi: 10.1021/acs.jcim.3c01239. Epub 2023 Sep 1.
5
Efficient Exploration of Chemical Space with Docking and Deep Learning.
J Chem Theory Comput. 2021 Nov 9;17(11):7106-7119. doi: 10.1021/acs.jctc.1c00810. Epub 2021 Sep 30.
6
Synthon-based ligand discovery in virtual libraries of over 11 billion compounds.
Nature. 2022 Jan;601(7893):452-459. doi: 10.1038/s41586-021-04220-9. Epub 2021 Dec 15.
7
Structure-Based Virtual Screening of Commercially Available Compound Libraries.
Methods Mol Biol. 2016;1439:65-76. doi: 10.1007/978-1-4939-3673-1_4.
8
Structure-Based Virtual Screening.
Methods Mol Biol. 2017;1558:111-124. doi: 10.1007/978-1-4939-6783-4_5.
10
Perspectives on current approaches to virtual screening in drug discovery.
Expert Opin Drug Discov. 2024 Oct;19(10):1173-1183. doi: 10.1080/17460441.2024.2390511. Epub 2024 Aug 12.

引用本文的文献

1
Ultrahigh-Throughput Virtual Screening Strategies against PPI Targets: A Case Study of STAT Inhibitors.
J Chem Inf Model. 2025 Jul 28;65(14):7734-7748. doi: 10.1021/acs.jcim.5c00907. Epub 2025 Jul 4.
2
Discovery of SARS-CoV-2 Nsp14-Methyltransferase (MTase) Inhibitors by Harnessing Scaffold-Centric Exploration of the Ultra Large Chemical Space.
ACS Pharmacol Transl Sci. 2025 Apr 25;8(5):1366-1400. doi: 10.1021/acsptsci.5c00111. eCollection 2025 May 9.
3
The Six Ds of Exponentials and drug discovery: A path toward reversing Eroom's law.
Drug Discov Today. 2025 Apr;30(4):104341. doi: 10.1016/j.drudis.2025.104341. Epub 2025 Mar 22.
4
Alternative weighting schemes for fine-tuned extended similarity indices.
J Chemom. 2024 Sep;38(9). doi: 10.1002/cem.3558. Epub 2024 May 11.
5
Exploring Chemical Spaces in the Billion Range: Is Docking a Computational Alternative to DNA-Encoded Libraries?
J Chem Inf Model. 2024 Dec 9;64(23):8963-8979. doi: 10.1021/acs.jcim.4c00803. Epub 2024 Sep 21.

本文引用的文献

1
Uni-Dock: GPU-Accelerated Docking Enables Ultralarge Virtual Screening.
J Chem Theory Comput. 2023 Jun 13;19(11):3336-3345. doi: 10.1021/acs.jctc.2c01145. Epub 2023 Apr 26.
2
Large-Scale Docking in the Cloud.
J Chem Inf Model. 2023 May 8;63(9):2735-2741. doi: 10.1021/acs.jcim.3c00031. Epub 2023 Apr 18.
3
Generative Models as an Emerging Paradigm in the Chemical Sciences.
J Am Chem Soc. 2023 Apr 26;145(16):8736-8750. doi: 10.1021/jacs.2c13467. Epub 2023 Apr 13.
4
Integrating structure-based approaches in generative molecular design.
Curr Opin Struct Biol. 2023 Apr;79:102559. doi: 10.1016/j.sbi.2023.102559. Epub 2023 Mar 2.
5
Advances in the discovery of new chemotypes through ultra-large library docking.
Expert Opin Drug Discov. 2023 Mar;18(3):303-313. doi: 10.1080/17460441.2023.2171984. Epub 2023 Feb 2.
6
Modeling the expansion of virtual screening libraries.
Nat Chem Biol. 2023 Jun;19(6):712-718. doi: 10.1038/s41589-022-01234-w. Epub 2023 Jan 16.
7
Iterative computational design and crystallographic screening identifies potent inhibitors targeting the Nsp3 macrodomain of SARS-CoV-2.
Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2212931120. doi: 10.1073/pnas.2212931120. Epub 2023 Jan 4.
8
Prediction of protein-ligand binding affinity from sequencing data with interpretable machine learning.
Nat Biotechnol. 2022 Oct;40(10):1520-1527. doi: 10.1038/s41587-022-01307-0. Epub 2022 May 23.
9
Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking.
Nat Protoc. 2022 Mar;17(3):672-697. doi: 10.1038/s41596-021-00659-2. Epub 2022 Feb 4.
10
Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules.
Chem Sci. 2021 Nov 17;12(48):15960-15974. doi: 10.1039/d1sc05579h. eCollection 2021 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验