Zhang Guanhua, Liu Xiuxue, Liu Huaizhi, Wang Xiaohu, Duan Fuqing, Yu Huihuang, Nie Zeqi, Wei Donghai, Zhang Yapeng, Pan Huihuang, Duan Huigao
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China.
Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China.
Small Methods. 2024 Jun;8(6):e2300792. doi: 10.1002/smtd.202300792. Epub 2023 Oct 6.
Emerging flexible and wearable electronic products are placing a compelling demand on lightweight transparent energy storage devices. Owing to their distinguishing features of safety, high specific energy, cycling stability, and rapid charge/discharge advantages, Zn-ion hybrid supercapacitors are a current topic of discussion. However, the trade-off for optical transmittance and energy density remains a great challenge. Here, a high-performance Zn-ion hybrid supercapacitor based on the customizable ultrathin (5 µm), ultralight (0.45 mg cm), and ultra-transparent (87.6%) Ni micromesh based cathode and Zn micromesh anode with the highest figure of merit (84 843) is proposed. The developed flexible transparent Zn-ion hybrid supercapacitors reveal excellent cycle stability (no decline after 20 000 cycles), high areal energy density (31.69 µWh cm), and high power density (512 µW cm). In addition, the assembled solid flexible and transparent Zn-ion hybrid supercapacitor with polyacrylamide gel electrolyte shows extraordinary mechanical properties even under extreme bending and twisting operation. Furthermore, the full device displays a high optical transmittance over 55.04% and can be conformally integrated with diverse devices as a flexible transparent power supply. The fabrication technology offers seamless compatibility with industrial manufacturing, making it an ideal model for the advancement of portable and wearable devices.
新兴的柔性和可穿戴电子产品对轻质透明储能设备提出了迫切需求。由于其具有安全、高比能量、循环稳定性以及快速充放电等显著特点,锌离子混合超级电容器成为当前的热门讨论话题。然而,在光学透过率和能量密度之间进行权衡仍然是一个巨大的挑战。在此,我们提出了一种基于可定制的超薄(5微米)、超轻(0.45毫克/平方厘米)且超透明(87.6%)的镍微网阴极和锌微网阳极的高性能锌离子混合超级电容器,其品质因数最高(84843)。所开发的柔性透明锌离子混合超级电容器具有出色的循环稳定性(20000次循环后无衰减)、高面积能量密度(31.69微瓦时/平方厘米)和高功率密度(512微瓦/平方厘米)。此外,采用聚丙烯酰胺凝胶电解质组装的固态柔性透明锌离子混合超级电容器即使在极端弯曲和扭曲操作下也表现出非凡的机械性能。再者,整个器件的光学透过率高达55.04%以上,并且可以作为柔性透明电源与各种器件共形集成。该制造技术与工业制造具有无缝兼容性,使其成为便携式和可穿戴设备发展的理想模型。