Kumar Prakash, Paul Ranjit Kumar, Roy Himadri Shekhar, Yeasin Md, Paul Amrit Kumar
ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi, India.
Methods Mol Biol. 2024;2719:181-197. doi: 10.1007/978-1-0716-3461-5_11.
Advancements in high-throughput technologies, genomics, transcriptomics, and metabolomics play an important role in obtaining biological information about living organisms. The field of computational biology and bioinformatics has experienced significant growth with the advent of high-throughput sequencing technologies and other high-throughput techniques. The resulting large amounts of data present both opportunities and challenges for data analysis. Big data analysis has become essential for extracting meaningful insights from the massive amount of data. In this chapter, we provide an overview of the current status of big data analysis in computational biology and bioinformatics. We discuss the various aspects of big data analysis, including data acquisition, storage, processing, and analysis. We also highlight some of the challenges and opportunities of big data analysis in this area of research. Despite the challenges, big data analysis presents significant opportunities like development of efficient and fast computing algorithms for advancing our understanding of biological processes, identifying novel biomarkers for breeding research and developments, predicting disease, and identifying potential drug targets for drug development programs.
高通量技术、基因组学、转录组学和代谢组学的进步在获取有关生物体的生物学信息方面发挥着重要作用。随着高通量测序技术和其他高通量技术的出现,计算生物学和生物信息学领域经历了显著的发展。由此产生的大量数据为数据分析带来了机遇和挑战。大数据分析对于从海量数据中提取有意义的见解变得至关重要。在本章中,我们概述了计算生物学和生物信息学中大数据分析的现状。我们讨论了大数据分析的各个方面,包括数据采集、存储、处理和分析。我们还强调了该研究领域中大数据分析的一些挑战和机遇。尽管存在挑战,但大数据分析带来了重大机遇,例如开发高效快速的计算算法以增进我们对生物过程的理解、识别用于育种研究和开发的新型生物标志物、预测疾病以及识别药物开发项目的潜在药物靶点。