Davis-Turak Jeremy, Courtney Sean M, Hazard E Starr, Glen W Bailey, da Silveira Willian A, Wesselman Timothy, Harbin Larry P, Wolf Bethany J, Chung Dongjun, Hardiman Gary
a OnRamp Bioinformatics, Inc ., San Diego , CA.
b MUSC Bioinformatics , Center for Genomics Medicine, Medical University of South Carolina (MUSC) , Charleston , SC.
Expert Rev Mol Diagn. 2017 Mar;17(3):225-237. doi: 10.1080/14737159.2017.1282822. Epub 2017 Jan 25.
The emergence and mass utilization of high-throughput (HT) technologies, including sequencing technologies (genomics) and mass spectrometry (proteomics, metabolomics, lipids), has allowed geneticists, biologists, and biostatisticians to bridge the gap between genotype and phenotype on a massive scale. These new technologies have brought rapid advances in our understanding of cell biology, evolutionary history, microbial environments, and are increasingly providing new insights and applications towards clinical care and personalized medicine. Areas covered: The very success of this industry also translates into daunting big data challenges for researchers and institutions that extend beyond the traditional academic focus of algorithms and tools. The main obstacles revolve around analysis provenance, data management of massive datasets, ease of use of software, interpretability and reproducibility of results. Expert commentary: The authors review the challenges associated with implementing bioinformatics best practices in a large-scale setting, and highlight the opportunity for establishing bioinformatics pipelines that incorporate data tracking and auditing, enabling greater consistency and reproducibility for basic research, translational or clinical settings.
高通量(HT)技术的出现和大规模应用,包括测序技术(基因组学)和质谱技术(蛋白质组学、代谢组学、脂质组学),使得遗传学家、生物学家和生物统计学家能够在大规模层面上弥合基因型与表型之间的差距。这些新技术在我们对细胞生物学、进化史、微生物环境的理解方面取得了快速进展,并且越来越多地为临床护理和个性化医疗提供新的见解和应用。涵盖领域:该行业的巨大成功也给研究人员和机构带来了令人生畏的大数据挑战,这些挑战超出了算法和工具等传统学术重点。主要障碍围绕分析来源、海量数据集的数据管理、软件的易用性、结果的可解释性和可重复性。专家评论:作者回顾了在大规模环境中实施生物信息学最佳实践所面临的挑战,并强调了建立纳入数据跟踪和审计的生物信息学管道的机会,从而为基础研究、转化或临床环境实现更高的一致性和可重复性。