Suppr超能文献

基因组学流程与数据整合:研究环境中的挑战与机遇

Genomics pipelines and data integration: challenges and opportunities in the research setting.

作者信息

Davis-Turak Jeremy, Courtney Sean M, Hazard E Starr, Glen W Bailey, da Silveira Willian A, Wesselman Timothy, Harbin Larry P, Wolf Bethany J, Chung Dongjun, Hardiman Gary

机构信息

a OnRamp Bioinformatics, Inc ., San Diego , CA.

b MUSC Bioinformatics , Center for Genomics Medicine, Medical University of South Carolina (MUSC) , Charleston , SC.

出版信息

Expert Rev Mol Diagn. 2017 Mar;17(3):225-237. doi: 10.1080/14737159.2017.1282822. Epub 2017 Jan 25.

Abstract

The emergence and mass utilization of high-throughput (HT) technologies, including sequencing technologies (genomics) and mass spectrometry (proteomics, metabolomics, lipids), has allowed geneticists, biologists, and biostatisticians to bridge the gap between genotype and phenotype on a massive scale. These new technologies have brought rapid advances in our understanding of cell biology, evolutionary history, microbial environments, and are increasingly providing new insights and applications towards clinical care and personalized medicine. Areas covered: The very success of this industry also translates into daunting big data challenges for researchers and institutions that extend beyond the traditional academic focus of algorithms and tools. The main obstacles revolve around analysis provenance, data management of massive datasets, ease of use of software, interpretability and reproducibility of results. Expert commentary: The authors review the challenges associated with implementing bioinformatics best practices in a large-scale setting, and highlight the opportunity for establishing bioinformatics pipelines that incorporate data tracking and auditing, enabling greater consistency and reproducibility for basic research, translational or clinical settings.

摘要

高通量(HT)技术的出现和大规模应用,包括测序技术(基因组学)和质谱技术(蛋白质组学、代谢组学、脂质组学),使得遗传学家、生物学家和生物统计学家能够在大规模层面上弥合基因型与表型之间的差距。这些新技术在我们对细胞生物学、进化史、微生物环境的理解方面取得了快速进展,并且越来越多地为临床护理和个性化医疗提供新的见解和应用。涵盖领域:该行业的巨大成功也给研究人员和机构带来了令人生畏的大数据挑战,这些挑战超出了算法和工具等传统学术重点。主要障碍围绕分析来源、海量数据集的数据管理、软件的易用性、结果的可解释性和可重复性。专家评论:作者回顾了在大规模环境中实施生物信息学最佳实践所面临的挑战,并强调了建立纳入数据跟踪和审计的生物信息学管道的机会,从而为基础研究、转化或临床环境实现更高的一致性和可重复性。

相似文献

7
9
Accelerating Bioinformatics Applications via Emerging Parallel Computing Systems.通过新兴并行计算系统加速生物信息学应用
IEEE/ACM Trans Comput Biol Bioinform. 2015 Sep-Oct;12(5):971-2. doi: 10.1109/tcbb.2015.2457736.
10
Bioinformatics: bringing it all together.生物信息学:整合一切。
Nature. 2002 Oct 17;419(6908):751, 753, 755 passim. doi: 10.1038/419751a.

引用本文的文献

3
Next-Generation Sequencing (NGS): Platforms and Applications.下一代测序(NGS):平台与应用
J Pharm Bioallied Sci. 2024 Feb;16(Suppl 1):S41-S45. doi: 10.4103/jpbs.jpbs_838_23. Epub 2024 Feb 29.

本文引用的文献

2
Toward a Shared Vision for Cancer Genomic Data.迈向癌症基因组数据的共同愿景。
N Engl J Med. 2016 Sep 22;375(12):1109-12. doi: 10.1056/NEJMp1607591.
5
The Ensembl Variant Effect Predictor.Ensembl变异效应预测器。
Genome Biol. 2016 Jun 6;17(1):122. doi: 10.1186/s13059-016-0974-4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验