Suppr超能文献

机器学习:在植物系统生物学中的挑战与机遇。

Machine learning: its challenges and opportunities in plant system biology.

机构信息

Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.

Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.

出版信息

Appl Microbiol Biotechnol. 2022 May;106(9-10):3507-3530. doi: 10.1007/s00253-022-11963-6. Epub 2022 May 16.

Abstract

Sequencing technologies are evolving at a rapid pace, enabling the generation of massive amounts of data in multiple dimensions (e.g., genomics, epigenomics, transcriptomic, metabolomics, proteomics, and single-cell omics) in plants. To provide comprehensive insights into the complexity of plant biological systems, it is important to integrate different omics datasets. Although recent advances in computational analytical pipelines have enabled efficient and high-quality exploration and exploitation of single omics data, the integration of multidimensional, heterogenous, and large datasets (i.e., multi-omics) remains a challenge. In this regard, machine learning (ML) offers promising approaches to integrate large datasets and to recognize fine-grained patterns and relationships. Nevertheless, they require rigorous optimizations to process multi-omics-derived datasets. In this review, we discuss the main concepts of machine learning as well as the key challenges and solutions related to the big data derived from plant system biology. We also provide in-depth insight into the principles of data integration using ML, as well as challenges and opportunities in different contexts including multi-omics, single-cell omics, protein function, and protein-protein interaction. KEY POINTS: • The key challenges and solutions related to the big data derived from plant system biology have been highlighted. • Different methods of data integration have been discussed. • Challenges and opportunities of the application of machine learning in plant system biology have been highlighted and discussed.

摘要

测序技术发展迅速,能够在多个维度(如基因组学、表观基因组学、转录组学、代谢组学、蛋白质组学和单细胞组学)产生大量数据。为了全面了解植物生物系统的复杂性,整合不同的组学数据集非常重要。尽管计算分析管道的最新进展使得高效、高质量地探索和利用单一组学数据成为可能,但多维、异质和大型数据集(即多组学)的整合仍然是一个挑战。在这方面,机器学习 (ML) 提供了有前途的方法来整合大型数据集,并识别细粒度的模式和关系。然而,它们需要严格的优化来处理多组学衍生的数据集。在这篇综述中,我们讨论了机器学习的主要概念,以及与植物系统生物学相关的大数据相关的关键挑战和解决方案。我们还深入探讨了使用 ML 进行数据集成的原则,以及在不同背景下(包括多组学、单细胞组学、蛋白质功能和蛋白质-蛋白质相互作用)的挑战和机遇。

要点

  • 强调了与植物系统生物学相关的大数据的关键挑战和解决方案。

  • 讨论了不同的数据集成方法。

  • 强调和讨论了机器学习在植物系统生物学中的应用的挑战和机遇。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验