Suppr超能文献

细胞阻塞和解除阻塞在组织发育中至关重要吗?

Are cell jamming and unjamming essential in tissue development?

作者信息

Atia Lior, Fredberg Jeffrey J, Gov Nir S, Pegoraro Adrian F

机构信息

Department of Mechanical Engineering, Ben Gurion University, Beer-Sheva, Israel.

Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

Cells Dev. 2021 Dec;168:203727. doi: 10.1016/j.cdev.2021.203727. Epub 2021 Aug 4.

Abstract

The last decade has seen a surge of evidence supporting the existence of the transition of the multicellular tissue from a collective material phase that is regarded as being jammed to a collective material phase that is regarded as being unjammed. The jammed phase is solid-like and effectively 'frozen', and therefore is associated with tissue homeostasis, rigidity, and mechanical stability. The unjammed phase, by contrast, is fluid-like and effectively 'melted', and therefore is associated with mechanical fluidity, plasticity and malleability that are required in dynamic multicellular processes that sculpt organ microstructure. Such multicellular sculpturing, for example, occurs during embryogenesis, growth and remodeling. Although unjamming and jamming events in the multicellular collective are reminiscent of those that occur in the inert granular collective, such as grain in a hopper that can flow or clog, the analogy is instructive but limited, and the implications for cell biology remain unclear. Here we ask, are the cellular jamming transition and its inverse --the unjamming transition-- mere epiphenomena? That is, are they dispensable downstream events that accompany but neither cause nor quench these core multicellular processes? Drawing from selected examples in developmental biology, here we suggest the hypothesis that, to the contrary, the graded departure from a jammed phase enables controlled degrees of malleability as might be required in developmental dynamics. We further suggest that the coordinated approach to a jammed phase progressively slows those dynamics and ultimately enables long-term mechanical stability as might be required in the mature homeostatic multicellular tissue.

摘要

在过去十年中,大量证据表明多细胞组织存在从被认为是受阻的集体物质相转变为被认为是未受阻的集体物质相的过程。受阻相类似固体且有效地“冻结”,因此与组织稳态、刚性和机械稳定性相关。相比之下,未受阻相类似流体且有效地“融化”,因此与塑造器官微观结构的动态多细胞过程中所需的机械流动性、可塑性和延展性相关。例如,这种多细胞塑造过程发生在胚胎发育、生长和重塑过程中。尽管多细胞集体中的未受阻和受阻事件让人联想到惰性颗粒集体中发生的那些事件,比如料斗中的谷物可能流动或堵塞,但这种类比具有启发性但也有局限性,其对细胞生物学的影响仍不清楚。在这里我们要问,细胞受阻转变及其相反过程——未受阻转变——仅仅是附带现象吗?也就是说,它们是伴随这些核心多细胞过程但既不引发也不终止这些过程的可有可无的下游事件吗?从发育生物学中选取的例子出发,我们在此提出一个假说,与之相反的是,从受阻相逐渐偏离能够实现发育动态过程中可能需要的可控程度的延展性。我们进一步提出,趋向受阻相的协调过程会逐渐减缓那些动态过程,并最终实现成熟稳态多细胞组织中可能需要的长期机械稳定性。

相似文献

1
Are cell jamming and unjamming essential in tissue development?
Cells Dev. 2021 Dec;168:203727. doi: 10.1016/j.cdev.2021.203727. Epub 2021 Aug 4.
2
On the origins of order.
Soft Matter. 2022 Mar 23;18(12):2346-2353. doi: 10.1039/d1sm01716k.
3
Regulation of epithelial cell jamming transition by cytoskeleton and cell-cell interactions.
Biophys Rev (Melville). 2024 Oct 14;5(4):041301. doi: 10.1063/5.0220088. eCollection 2024 Dec.
4
Cell Jamming in the Airway Epithelium.
Ann Am Thorac Soc. 2016 Mar;13 Suppl 1(Suppl 1):S64-7. doi: 10.1513/AnnalsATS.201507-476MG.
5
Distinct impacts of polar and nematic self-propulsion on active unjamming.
J Chem Phys. 2022 Oct 28;157(16):164901. doi: 10.1063/5.0103499.
6
Unjamming and cell shape in the asthmatic airway epithelium.
Nat Mater. 2015 Oct;14(10):1040-8. doi: 10.1038/nmat4357. Epub 2015 Aug 3.
7
Clustering and jamming in epithelial-mesenchymal co-cultures.
Soft Matter. 2016 Oct 12;12(40):8327-8337. doi: 10.1039/c6sm01287f.
8
Unjamming and collective migration in MCF10A breast cancer cell lines.
Biochem Biophys Res Commun. 2020 Jan 15;521(3):706-715. doi: 10.1016/j.bbrc.2019.10.188. Epub 2019 Nov 4.
10
Spontaneous jamming and unjamming in a hopper with multiple exit orifices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Aug;90(2):020201. doi: 10.1103/PhysRevE.90.020201. Epub 2014 Aug 20.

引用本文的文献

1
ECM Mechanics Control Jamming-to-Unjamming Transition of Cancer Cells.
Cells. 2025 Jun 20;14(13):943. doi: 10.3390/cells14130943.
2
Coping with uncertainty: Challenges for robust pattern formation in dynamical tissues.
Semin Cell Dev Biol. 2025 Sep;173:103629. doi: 10.1016/j.semcdb.2025.103629. Epub 2025 Jul 8.
3
Anatomical and molecular insights into avian inner ear sensory hair cell regeneration.
Dev Biol. 2025 Sep;525:13-25. doi: 10.1016/j.ydbio.2025.05.021. Epub 2025 May 23.
4
Epithelial Layer Fluidization by Curvature-Induced Unjamming.
Phys Rev Lett. 2025 Apr 4;134(13):138402. doi: 10.1103/PhysRevLett.134.138402.
5
Interfacial energy constraints are sufficient to align cells over large distances.
Biophys J. 2025 Mar 18;124(6):1011-1023. doi: 10.1016/j.bpj.2025.02.011. Epub 2025 Mar 12.
7
Large-scale control over collective cell migration using light-activated epidermal growth factor receptors.
Cell Syst. 2025 Mar 19;16(3):101203. doi: 10.1016/j.cels.2025.101203. Epub 2025 Mar 3.
8
Prickle2 regulates apical junction remodeling and tissue fluidity during vertebrate neurulation.
J Cell Biol. 2025 Apr 7;224(4). doi: 10.1083/jcb.202407025. Epub 2025 Feb 14.
9
Unjamming Transition as a Paradigm for Biomechanical Control of Cancer Metastasis.
Cytoskeleton (Hoboken). 2025 Jun;82(6):388-403. doi: 10.1002/cm.21963. Epub 2024 Dec 5.
10
Regulation of epithelial cell jamming transition by cytoskeleton and cell-cell interactions.
Biophys Rev (Melville). 2024 Oct 14;5(4):041301. doi: 10.1063/5.0220088. eCollection 2024 Dec.

本文引用的文献

1
Jamming and arrest of cell motion in biological tissues.
Curr Opin Cell Biol. 2021 Oct;72:146-155. doi: 10.1016/j.ceb.2021.07.011. Epub 2021 Aug 27.
2
Embryonic Tissues as Active Foams.
Nat Phys. 2021 Jul;17:859-866. doi: 10.1038/s41567-021-01215-1. Epub 2021 Apr 12.
3
Genomic signatures of the unjamming transition in compressed human bronchial epithelial cells.
Sci Adv. 2021 Jul 23;7(30). doi: 10.1126/sciadv.abf1088. Print 2021 Jul.
4
A biomechanical switch regulates the transition towards homeostasis in oesophageal epithelium.
Nat Cell Biol. 2021 May;23(5):511-525. doi: 10.1038/s41556-021-00679-w. Epub 2021 May 10.
5
6
Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions.
Cell. 2021 Apr 1;184(7):1914-1928.e19. doi: 10.1016/j.cell.2021.02.017. Epub 2021 Mar 16.
7
Mechanics of Development.
Dev Cell. 2021 Jan 25;56(2):240-250. doi: 10.1016/j.devcel.2020.11.025. Epub 2020 Dec 14.
8
Membrane Tension Gates ERK-Mediated Regulation of Pluripotent Cell Fate.
Cell Stem Cell. 2021 Feb 4;28(2):273-284.e6. doi: 10.1016/j.stem.2020.10.018. Epub 2020 Nov 19.
9
Tension heterogeneity directs form and fate to pattern the myocardial wall.
Nature. 2020 Dec;588(7836):130-134. doi: 10.1038/s41586-020-2946-9. Epub 2020 Nov 18.
10
Regionalized tissue fluidization is required for epithelial gap closure during insect gastrulation.
Nat Commun. 2020 Nov 5;11(1):5604. doi: 10.1038/s41467-020-19356-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验