Suppr超能文献

验证教学设计和预测组织学教育中学生的表现:通过虚拟显微镜使用机器学习。

Validating instructional design and predicting student performance in histology education: Using machine learning via virtual microscopy.

机构信息

Department of Biomedical and Preclinical Sciences, Faculty of Medicine, University of Liege, Liège, Belgium.

Montefiore Institute of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium.

出版信息

Anat Sci Educ. 2024 Jul-Aug;17(5):984-997. doi: 10.1002/ase.2346. Epub 2023 Oct 7.

Abstract

As a part of modern technological environments, virtual microscopy enriches histological learning, with support from large institutional investments. However, existing literature does not supply empirical evidence of its role in improving pedagogy. Virtual microscopy provides fresh opportunities for investigating user behavior during the histology learning process, through digitized histological slides. This study establishes how students' perceptions and user behavior data can be processed and analyzed using machine learning algorithms. These also provide predictive data called learning analytics that enable predicting students' performance and behavior favorable for academic success. This information can be interpreted and used for validating instructional designs. Data on the perceptions, performances, and user behavior of 552 students enrolled in a histology course were collected from the virtual microscope, Cytomine®. These data were analyzed using an ensemble of machine learning algorithms, the extra-tree regression method, and predictive statistics. The predictive algorithms identified the most pertinent histological slides and descriptive tags, alongside 10 types of student behavior conducive to academic success. We used these data to validate our instructional design, and align the educational purpose, learning outcomes, and evaluation methods of digitized histological slides on Cytomine®. This model also predicts students' examination scores, with an error margin of <0.5 out of 20 points. The results empirically demonstrate the value of a digital learning environment for both students and teachers of histology.

摘要

作为现代技术环境的一部分,虚拟显微镜通过大型机构投资丰富了组织学学习。然而,现有文献并没有提供其在改善教学法方面作用的实证证据。虚拟显微镜通过数字化组织学切片为研究学生在组织学学习过程中的用户行为提供了新的机会。本研究建立了如何使用机器学习算法处理和分析学生的感知和用户行为数据。这些算法还提供了称为学习分析的预测数据,能够预测有利于学业成功的学生表现和行为。这些信息可以进行解释并用于验证教学设计。从虚拟显微镜 Cytomine®中收集了 552 名学生在组织学课程中的感知、表现和用户行为数据。使用机器学习算法的集成、Extra-Tree 回归方法和预测统计对这些数据进行了分析。预测算法确定了最相关的组织学幻灯片和描述性标签,以及 10 种有利于学业成功的学生行为类型。我们使用这些数据来验证我们的教学设计,并调整 Cytomine®上数字化组织学幻灯片的教育目的、学习成果和评估方法。该模型还可以预测学生的考试成绩,误差幅度在 20 分中的<0.5 分以内。结果从经验上证明了数字化学习环境对组织学的学生和教师都具有价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验