State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China.
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
Angew Chem Int Ed Engl. 2023 Nov 20;62(47):e202312996. doi: 10.1002/anie.202312996. Epub 2023 Oct 19.
Phomactin diterpenoids possess a unique bicyclo[9.3.1]pentadecane skeleton with multiple oxidative modifications, and are good platelet-activating factor (PAF) antagonists that can inhibit PAF-induced platelet aggregation. In this study, we identified the gene cluster (phm) responsible for the biosynthesis of phomactins from a marine fungus, Phoma sp. ATCC 74077. Despite the complexity of their structures, phomactin biosynthesis only requires two enzymes: a type I diterpene cyclase PhmA and a P450 monooxygenase PhmC. PhmA was found to catalyze the formation of the phomactatriene, while PhmC sequentially catalyzes the oxidation of multiple sites, leading to the generation of structurally diverse phomactins. The rearrangement mechanism of the diterpene scaffold was investigated through isotope labeling experiments. Additionally, we obtained the crystal complex of PhmA with its substrate analogue FGGPP and elucidated the novel metal-ion-binding mode and enzymatic mechanism of PhmA through site-directed mutagenesis. This study provides the first insight into the biosynthesis of phomactins, laying the foundation for the efficient production of phomactin natural products using synthetic biology approaches.
青霉烷二萜类化合物具有独特的双环[9.3.1]十五烷骨架和多种氧化修饰,是血小板激活因子(PAF)的拮抗剂,能抑制 PAF 诱导的血小板聚集。在这项研究中,我们从海洋真菌 Phoma sp. ATCC 74077 中鉴定出了负责青霉烷生物合成的基因簇(phm)。尽管它们的结构复杂,但青霉烷生物合成只需要两种酶:一种是 I 型二萜环化酶 PhmA,另一种是 P450 单加氧酶 PhmC。PhmA 被发现能催化青霉烷三烯的形成,而 PhmC 则依次催化多个位点的氧化,从而产生结构多样的青霉烷。通过同位素标记实验研究了二萜支架的重排机制。此外,我们获得了 PhmA 与其底物类似物 FGGPP 的晶体复合物,并通过定点突变阐明了 PhmA 的新型金属离子结合模式和酶促机制。本研究首次揭示了青霉烷的生物合成机制,为利用合成生物学方法高效生产青霉烷天然产物奠定了基础。