School of Mathematics and Statistics, Xiamen University of Technology, Xiamen 361024, China.
School of Mathematics and Statistics, Xiamen University of Technology, Xiamen 361024, China.
Methods. 2023 Nov;219:102-110. doi: 10.1016/j.ymeth.2023.10.002. Epub 2023 Oct 5.
The outbreak of the human coronavirus (SARS-CoV-2) has placed a huge burden on public health and the world economy. Compared with de novo drug discovery, drug repurposing is a promising therapeutic strategy that facilitates rapid clinical treatment decisions, shortens the development process, and reduces costs.
In this study, we propose a weighted hypergraph learning and adaptive inductive matrix completion method, WHAIMC, for predicting potential virus-drug associations. Firstly, we integrate multi-source data to describe viruses and drugs from multiple perspectives, including drug chemical structures, drug targets, virus complete genome sequences, and virus-drug associations. Then, WHAIMC establishes an adaptive inductive matrix completion model to improve performance through adaptive learning of similarity relations. Finally, WHAIMC introduces weighted hypergraph learning into adaptive inductive matrix completion to capture higher-order relationships of viruses (or drugs). The results showed that WHAIMC had a strong predictive performance for new virus-drug associations, new viruses, and new drugs. The case study further demonstrates that WHAIMC is highly effective for repositioning antiviral drugs against SARS-CoV-2 and provides a new perspective for virus-drug association prediction. The code and data in this study is freely available at https://github.com/Mayingjun20179/WHAIMC.
人类冠状病毒(SARS-CoV-2)的爆发给公共卫生和世界经济带来了巨大负担。与从头发现药物相比,药物再利用是一种很有前途的治疗策略,它可以促进快速的临床治疗决策,缩短开发过程并降低成本。
在这项研究中,我们提出了一种加权超图学习和自适应归纳矩阵完成方法 WHAIMC,用于预测潜在的病毒-药物关联。首先,我们整合多源数据,从多个角度描述病毒和药物,包括药物化学结构、药物靶点、病毒完整基因组序列和病毒-药物关联。然后,WHAIMC 建立了一个自适应归纳矩阵完成模型,通过自适应学习相似关系来提高性能。最后,WHAIMC 将加权超图学习引入自适应归纳矩阵完成中,以捕捉病毒(或药物)的高阶关系。结果表明,WHAIMC 对新的病毒-药物关联、新病毒和新药具有很强的预测性能。案例研究进一步证明,WHAIMC 对抗 SARS-CoV-2 的抗病毒药物重新定位非常有效,为病毒-药物关联预测提供了新视角。本研究的代码和数据可在 https://github.com/Mayingjun20179/WHAIMC 上免费获取。