Aruna A S, Babu K R Remesh, Deepthi K
Dept. of Information Technology, Government Engineering College Palakkad, APJ Abdul Kalam Technological University, Palakkad, Kerala, 678633, India.
Department of Computer Science, College of Engineering Vadakara, Kozhikode, Kerala, 673105, India.
Mol Divers. 2025 Jun;29(3):2473-2487. doi: 10.1007/s11030-024-11003-7. Epub 2024 Oct 9.
The SARS-CoV-2 outbreak highlights the persistent vulnerability of humanity to epidemics and emerging microbial threats, emphasizing the lack of time to develop disease-specific treatments. Therefore, it appears beneficial to utilize existing resources and therapies. Computational drug repositioning is an effective strategy that redirects authorized drugs to new therapeutic purposes. This strategy holds significant promise for newly emerging diseases, as drug discovery is a lengthy and expensive process. Through this study, we present an ensemble method based on the convolutional neural network integrated with genetic algorithm and deep forest classifier for virus-drug association prediction (CGDVDA). We generated feature vectors by combining drug chemical structure and virus genomic sequence-based similarities, and extracted prominent deep features by applying the convolutional neural network. The convoluted features are optimized using the genetic algorithm and classified using the ensemble deep forest classifier to predict novel virus-drug associations. The proposed method predicts drugs for COVID-19 and other viral diseases in the dataset. The model could achieve ROC-AUC scores of 0.9159 on fivefold cross-validation. We compared the performance of the model with state-of-the-art approaches and classifiers. The experimental results and case studies illustrate the efficacy of CGDVDA in predicting drugs against viral infectious diseases.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的爆发凸显了人类在面对流行病和新出现的微生物威胁时持续存在的脆弱性,强调了开发针对特定疾病治疗方法的时间紧迫。因此,利用现有资源和疗法似乎是有益的。计算药物重新定位是一种有效的策略,可将已获批准的药物重新用于新的治疗目的。由于药物研发是一个漫长且昂贵的过程,该策略对新出现的疾病具有重大前景。通过本研究,我们提出了一种基于卷积神经网络并结合遗传算法和深度森林分类器的集成方法,用于病毒-药物关联预测(CGDVDA)。我们通过结合药物化学结构和基于病毒基因组序列的相似性来生成特征向量,并应用卷积神经网络提取突出的深度特征。利用遗传算法对卷积特征进行优化,并使用集成深度森林分类器进行分类,以预测新的病毒-药物关联。所提出的方法在数据集中预测了针对2019冠状病毒病(COVID-19)和其他病毒性疾病的药物。该模型在五折交叉验证中可实现0.9159的ROC-AUC分数。我们将该模型的性能与最先进的方法和分类器进行了比较。实验结果和案例研究说明了CGDVDA在预测抗病毒感染性疾病药物方面的有效性。