Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA.
Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
Nat Commun. 2023 Oct 7;14(1):6284. doi: 10.1038/s41467-023-42117-5.
Plants are challenged by drastically different osmotic environments during growth and development. Adaptation to these environments often involves mechanosensitive ion channels that can detect and respond to mechanical force. In the model plant Arabidopsis thaliana, the mechanosensitive channel MSL10 plays a crucial role in hypo-osmotic shock adaptation and programmed cell death induction, but the molecular basis of channel function remains poorly understood. Here, we report a structural and electrophysiological analysis of MSL10. The cryo-electron microscopy structures reveal a distinct heptameric channel assembly. Structures of the wild-type channel in detergent and lipid environments, and in the absence of membrane tension, capture an open conformation. Furthermore, structural analysis of a non-conductive mutant channel demonstrates that reorientation of phenylalanine side chains alone, without main chain rearrangements, may generate the hydrophobic gate. Together, these results reveal a distinct gating mechanism and advance our understanding of mechanotransduction.
在生长和发育过程中,植物面临着截然不同的渗透环境挑战。适应这些环境通常涉及机械敏感离子通道,这些通道可以检测和响应机械力。在模式植物拟南芥中,机械敏感通道 MSL10 在低渗冲击适应和程序性细胞死亡诱导中起着至关重要的作用,但通道功能的分子基础仍知之甚少。在这里,我们报告了 MSL10 的结构和电生理分析。低温电子显微镜结构揭示了一个独特的七聚体通道组装。去污剂和脂质环境中以及没有膜张力的情况下野生型通道的结构,捕获了一个开放构象。此外,非传导性突变体通道的结构分析表明,仅侧链的重定向,而没有主链重排,可能产生疏水性门。这些结果共同揭示了一个独特的门控机制,并推进了我们对机械转导的理解。