Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.
Biostatistics. 2024 Jul 1;25(3):885-903. doi: 10.1093/biostatistics/kxad026.
In recent years, the field of neuroimaging has undergone a paradigm shift, moving away from the traditional brain mapping approach towards the development of integrated, multivariate brain models that can predict categories of mental events. However, large interindividual differences in both brain anatomy and functional localization after standard anatomical alignment remain a major limitation in performing this type of analysis, as it leads to feature misalignment across subjects in subsequent predictive models. This article addresses this problem by developing and validating a new computational technique for reducing misalignment across individuals in functional brain systems by spatially transforming each subject's functional data to a common latent template map. Our proposed Bayesian functional group-wise registration approach allows us to assess differences in brain function across subjects and individual differences in activation topology. We achieve the probabilistic registration with inverse-consistency by utilizing the generalized Bayes framework with a loss function for the symmetric group-wise registration. It models the latent template with a Gaussian process, which helps capture spatial features in the template, producing a more precise estimation. We evaluate the method in simulation studies and apply it to data from an fMRI study of thermal pain, with the goal of using functional brain activity to predict physical pain. We find that the proposed approach allows for improved prediction of reported pain scores over conventional approaches. Received on 2 January 2017. Editorial decision on 8 June 2021.
近年来,神经影像学领域发生了范式转变,从传统的大脑映射方法转向开发能够预测心理事件类别的集成、多变量大脑模型。然而,在进行这种类型的分析时,大脑解剖结构和功能定位在个体间存在很大的差异,这仍然是一个主要限制,因为它导致后续预测模型中特征在不同受试者之间的不匹配。本文通过开发和验证一种新的计算技术来解决这个问题,该技术通过将每个受试者的功能数据空间转换到一个共同的潜在模板图,从而减少功能大脑系统中个体间的不匹配。我们提出的贝叶斯功能分组注册方法允许我们评估大脑功能在不同个体之间的差异,以及激活拓扑结构的个体差异。我们通过使用具有对称分组注册损失函数的广义贝叶斯框架来实现逆一致性的概率注册,对潜在模板进行建模。该模型使用高斯过程对潜在模板进行建模,有助于捕获模板中的空间特征,从而产生更精确的估计。我们在模拟研究中评估了该方法,并将其应用于热痛 fMRI 研究的数据中,目的是使用功能大脑活动来预测身体疼痛。我们发现,与传统方法相比,所提出的方法允许对报告的疼痛评分进行更好的预测。2017 年 1 月 2 日收到。2021 年 6 月 8 日编辑决定。