Suppr超能文献

T1 与 EPI 空间标准化模板对 fMRI 数据分析的影响。

The impact of T1 versus EPI spatial normalization templates for fMRI data analyses.

机构信息

The Mind Research Network & LBERI, Albuquerque, New Mexico.

Department of ECE, University of New Mexico, Albuquerque, New Mexico.

出版信息

Hum Brain Mapp. 2017 Nov;38(11):5331-5342. doi: 10.1002/hbm.23737. Epub 2017 Jul 26.

Abstract

Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template-based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used software packages implement two common template-based strategies: (1) affine transformation of the EPI data to an EPI template followed by nonlinear registration to an EPI template (EPInorm) and (2) affine transformation of the EPI data to the anatomic image for a given subject, followed by nonlinear registration of the anatomic data to an anatomic template, which produces a transformation that is applied to the EPI data (T1norm). EPI distortion correction can be used to adjust for geometric distortion of EPI relative to the T1 images. However, in practice, this EPI distortion correction step is often skipped. We compare these template-based strategies empirically in four large datasets. We find that the EPInorm approach consistently shows reduced variability across subjects, especially in the case when distortion correction is not applied. EPInorm also shows lower estimates for coregistration distances among subjects (i.e., within-dataset similarity is higher). Finally, the EPInorm approach shows higher T values in a task-based dataset. Thus, the EPInorm approach appears to amplify the power of the sample compared to the T1norm approach when not using distortion correction (i.e., the EPInorm boosts the effective sample size by 12-25%). In sum, these results argue for the use of EPInorm over the T1norm when no distortion correction is used. Hum Brain Mapp 38:5331-5342, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

摘要

脑到标准空间的空间标准化是功能磁共振成像 (fMRI) 数据组研究中广泛使用的方法。常用的基于模板的方法因回波平面成像 (EPI) 数据中的信号丢失和失真而变得复杂。使用最广泛的软件包实现了两种常见的基于模板的策略:(1) 将 EPI 数据的仿射变换到 EPI 模板,然后对 EPI 模板进行非线性注册 (EPInorm),以及 (2) 将 EPI 数据的仿射变换到给定受试者的解剖图像,然后对解剖数据进行非线性注册到解剖模板,生成应用于 EPI 数据的转换 (T1norm)。EPI 失真校正可用于调整 EPI 相对于 T1 图像的几何失真。然而,在实践中,通常会跳过此 EPI 失真校正步骤。我们在四个大型数据集上对这些基于模板的策略进行了实证比较。我们发现,EPInorm 方法在受试者之间显示出一致性降低的可变性,尤其是在未应用失真校正的情况下。EPInorm 还显示出受试者之间配准距离的较低估计值(即,数据集内相似性更高)。最后,EPInorm 方法在基于任务的数据集显示出更高的 T 值。因此,与 T1norm 方法相比,在不使用失真校正时,EPInorm 方法似乎放大了样本的功率(即,EPInorm 通过 12-25%提高了有效样本量)。总之,当不使用失真校正时,这些结果支持使用 EPInorm 而不是 T1norm。人类大脑映射 38:5331-5342, 2017. © 2017 作者 人类大脑映射 由 Wiley 期刊出版公司出版

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbc4/6867089/8a7ebf7d95e1/HBM-38-5331-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验