Wang Guoqing, Datta Abhirup, Lindquist Martin A
Department of Biostatistics, Johns Hopkins University.
Ann Appl Stat. 2022 Sep;16(3):1676-1699. doi: 10.1214/21-aoas1562. Epub 2022 Jul 19.
Functional magnetic resonance imaging (fMRI) has provided invaluable insight into our understanding of human behavior. However, large inter-individual differences in both brain anatomy and functional localization anatomical alignment remain a major limitation in conducting group analyses and performing population level inference. This paper addresses this problem by developing and validating a new computational technique for reducing misalignment across individuals in functional brain systems by spatially transforming each subjects functional data to a common reference map. Our proposed Bayesian functional registration approach allows us to assess differences in brain function across subjects and individual differences in activation topology. It combines intensity-based and feature-based information into an integrated framework, and allows inference to be performed on the transformation via the posterior samples. We evaluate the method in a simulation study and apply it to data from a study of thermal pain. We find that the proposed approach provides increased sensitivity for group-level inference.
功能磁共振成像(fMRI)为我们理解人类行为提供了宝贵的见解。然而,大脑解剖结构和功能定位的个体间巨大差异以及解剖对齐仍然是进行群体分析和进行群体水平推断的主要限制。本文通过开发和验证一种新的计算技术来解决这个问题,该技术通过将每个受试者的功能数据进行空间变换到一个共同的参考图谱,来减少功能脑系统中个体间的错位。我们提出的贝叶斯功能配准方法使我们能够评估不同受试者之间的脑功能差异以及激活拓扑结构的个体差异。它将基于强度和基于特征的信息整合到一个综合框架中,并允许通过后验样本对变换进行推断。我们在模拟研究中评估了该方法,并将其应用于一项热痛研究的数据。我们发现所提出的方法提高了群体水平推断的灵敏度。