Suppr超能文献

通过神经元层面的可视化来理解神经网络。

Understanding neural network through neuron level visualization.

机构信息

State Key Laboratory for Novel Software Technology, China; Department of Computer Science and Technology, Nanjing University, Nanjing 210023, China.

State Key Laboratory for Novel Software Technology, China; School of Artificial Intelligence, Nanjing University, Nanjing 210023, China.

出版信息

Neural Netw. 2023 Nov;168:484-495. doi: 10.1016/j.neunet.2023.09.030. Epub 2023 Sep 22.

Abstract

Neurons are the fundamental units of neural networks. In this paper, we propose a method for explaining neural networks by visualizing the learning process of neurons. For a trained neural network, the proposed method obtains the features learned by each neuron and displays the features in a human-understandable form. The features learned by different neurons are combined to analyze the working mechanism of different neural network models. The method is applicable to neural networks without requiring any changes to the architectures of the models. In this study, we apply the proposed method to both Fully Connected Networks (FCNs) and Convolutional Neural Networks (CNNs) trained using the backpropagation learning algorithm. We conduct experiments on models for image classification tasks to demonstrate the effectiveness of the method. Through these experiments, we gain insights into the working mechanisms of various neural network architectures and evaluate neural network interpretability from diverse perspectives.

摘要

神经元是神经网络的基本单元。在本文中,我们提出了一种通过可视化神经元的学习过程来解释神经网络的方法。对于经过训练的神经网络,所提出的方法获取每个神经元学习到的特征,并以人类可理解的形式显示这些特征。通过组合不同神经元学习到的特征,可以分析不同神经网络模型的工作机制。该方法适用于无需对模型结构进行任何更改的神经网络。在这项研究中,我们将所提出的方法应用于使用反向传播学习算法训练的全连接网络 (FCN) 和卷积神经网络 (CNN)。我们在图像分类任务的模型上进行实验,以验证该方法的有效性。通过这些实验,我们深入了解了各种神经网络架构的工作机制,并从不同角度评估了神经网络的可解释性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验