Suppr超能文献

朝向构建工程大肠杆菌菌株负载压力报告系统的转录生物标志物发现。

Transcriptional biomarker discovery toward building a load stress reporting system for engineered Escherichia coli strains.

机构信息

Interdisciplinary Computing and Complex BioSystems Group, Newcastle University, Newcastle upon Tyne, UK.

出版信息

Biotechnol Bioeng. 2024 Jan;121(1):355-365. doi: 10.1002/bit.28567. Epub 2023 Oct 9.

Abstract

Foreign proteins are produced by introducing synthetic constructs into host bacteria for biotechnology applications. This process can cause resource competition between synthetic circuits and host cells, placing a metabolic burden on the host cells which may result in load stress and detrimental physiological changes. Consequently, the host bacteria can experience slow growth, and the synthetic system may suffer from suboptimal function. To help in the detection of bacterial load stress, we developed machine-learning strategies to select a minimal number of genes that could serve as biomarkers for the design of load stress reporters. We identified pairs of biomarkers that showed discriminative capacity to detect the load stress states induced in 41 engineered Escherichia coli strains.

摘要

为了在生物技术应用中引入合成构建体来生产外源蛋白,我们将外源蛋白引入宿主细菌中。这一过程会导致合成回路与宿主细胞之间的资源竞争,从而给宿主细胞带来代谢负担,可能导致负载压力和有害的生理变化。因此,宿主细菌的生长速度会变慢,合成系统的功能也可能受到影响。为了帮助检测细菌负载压力,我们开发了机器学习策略,以选择最小数量的基因作为负载压力报告基因设计的生物标志物。我们确定了可以区分 41 株工程大肠杆菌诱导的负载压力状态的生物标志物对。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f30b/10953381/31842c6cb631/BIT-121-355-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验