分层变分自编码器为灵长类大脑中的运动处理提供了一种规范性解释。

Hierarchical VAEs provide a normative account of motion processing in the primate brain.

作者信息

Vafaii Hadi, Yates Jacob L, Butts Daniel A

机构信息

University of Maryland, College Park.

UC Berkeley.

出版信息

bioRxiv. 2023 Nov 5:2023.09.27.559646. doi: 10.1101/2023.09.27.559646.

Abstract

The relationship between perception and inference, as postulated by Helmholtz in the 19th century, is paralleled in modern machine learning by generative models like Variational Autoencoders (VAEs) and their hierarchical variants. Here, we evaluate the role of hierarchical inference and its alignment with brain function in the domain of motion perception. We first introduce a novel synthetic data framework, Retinal Optic Flow Learning (ROFL), which enables control over motion statistics and their causes. We then present a new hierarchical VAE and test it against alternative models on two downstream tasks: (i) predicting ground truth causes of retinal optic flow (e.g., self-motion); and (ii) predicting the responses of neurons in the motion processing pathway of primates. We manipulate the model architectures (hierarchical versus non-hierarchical), loss functions, and the causal structure of the motion stimuli. We find that hierarchical latent structure in the model leads to several improvements. First, it improves the linear decodability of ground truth factors and does so in a sparse and disentangled manner. Second, our hierarchical VAE outperforms previous state-of-the-art models in predicting neuronal responses and exhibits sparse latent-to-neuron relationships. These results depend on the causal structure of the world, indicating that alignment between brains and artificial neural networks depends not only on architecture but also on matching ecologically relevant stimulus statistics. Taken together, our results suggest that hierarchical Bayesian inference underlines the brain's understanding of the world, and hierarchical VAEs can effectively model this understanding.

摘要

19世纪由亥姆霍兹提出的感知与推理之间的关系,在现代机器学习中可由变分自编码器(VAE)及其分层变体等生成模型来类比。在此,我们评估分层推理在运动感知领域中的作用及其与脑功能的一致性。我们首先引入一种新颖的合成数据框架——视网膜光流学习(ROFL),它能够控制运动统计及其成因。然后,我们提出一种新的分层VAE,并在两项下游任务中与其他模型进行测试:(i)预测视网膜光流的真实成因(例如自我运动);(ii)预测灵长类动物运动处理通路中神经元的反应。我们操纵模型架构(分层与非分层)、损失函数以及运动刺激的因果结构。我们发现模型中的分层潜在结构带来了多项改进。首先,它提高了真实因素的线性可解码性,并且是以稀疏且解缠结的方式实现的。其次,我们的分层VAE在预测神经元反应方面优于先前的最先进模型,并展现出稀疏的潜在与神经元关系。这些结果取决于世界的因果结构,表明大脑与人工神经网络之间的一致性不仅取决于架构,还取决于与生态相关的刺激统计的匹配。综上所述,我们的结果表明分层贝叶斯推理是大脑对世界理解的基础,并且分层VAE能够有效地模拟这种理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a210/10627323/bf5b31c1dbe9/nihpp-2023.09.27.559646v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索