Mechatronic Program Faculty of Engineering and Technology, Egyptian Chinese University, Cairo, Egypt.
Mechanical Design and Production Engineering Department, Cairo University, Giza, Egypt.
J Biomater Sci Polym Ed. 2024 Jan;35(1):85-108. doi: 10.1080/09205063.2023.2268949. Epub 2024 Jan 2.
This research investigates the biocompatibility, mechanical strength, and tribological properties of a hybrid composite material composed of high-density polyethylene (HDPE), hydroxyapatite (HAp), and titanium dioxide nanoparticles (Ti ). The study explores the microstructural characteristics of the composite material using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Samples of HDPE-30%HAp with varying concentrations of Ti (5, 10, 15, and 20%) were prepared and extruded using a twin-screw machine. The hybrid composite materials underwent mechanical tests (tensile, flexural, and hardness), tribological tests (friction and wear rate), and antibacterial tests (resistance to and bacteria). The results indicate that the optimal hybrid composite sample was HDPE-30%HAP-10% Ti , which demonstrated excellent mechanical properties (maximum tensile strength of 25.93 MPa and young modulus of 480 MPa) and a low coefficient of friction (COF∼ 0.07) while achieving high wear resistance (wear rate in the order of 1m ). The study shows that the improvement in mechanical properties results in a corresponding improvement in tribological properties. The antibacterial tests revealed that the hybrid composite material exhibited resistance to and bacteria. The findings of this study suggest that the HDPE-30%HAP-10% Ti composite is a promising material for use in biomedical applications due to its excellent biocompatibility and desirable mechanical and tribological properties. The study demonstrates the potential of reinforced hybrid composite materials in overcoming the disadvantages of monolithic and hybrid micro-composites and highlights the importance of investigating the microstructural, tribological, and mechanical strength characteristics of composite materials for biomedical applications.
本研究探讨了由高密度聚乙烯(HDPE)、羟基磷灰石(HAp)和纳米二氧化钛(Ti )组成的混合复合材料的生物相容性、力学强度和摩擦学性能。研究使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和 X 射线衍射(XRD)研究了复合材料的微观结构特征。制备了 HDPE-30%HAp 并添加不同浓度 Ti (5、10、15 和 20%)的样品,然后使用双螺杆挤出机进行挤出。对混合复合材料进行了力学试验(拉伸、弯曲和硬度)、摩擦学试验(摩擦和磨损率)和抗菌试验(对 和 细菌的抵抗力)。结果表明,最佳的混合复合材料样品为 HDPE-30%HAP-10%Ti ,其具有优异的力学性能(最大拉伸强度为 25.93 MPa,杨氏模量为 480 MPa)和较低的摩擦系数(COF∼ 0.07),同时具有较高的耐磨性(磨损率在 1m 范围内)。研究表明,力学性能的提高导致摩擦学性能的相应提高。抗菌试验表明,混合复合材料对 和 细菌具有抵抗力。本研究结果表明,HDPE-30%HAP-10%Ti 复合材料由于其优异的生物相容性和理想的力学和摩擦学性能,是一种有前途的生物医学应用材料。该研究表明,增强型混合复合材料在克服整体和混合微复合材料的缺点方面具有潜力,并强调了研究用于生物医学应用的复合材料的微观结构、摩擦学和力学强度特性的重要性。