Suppr超能文献

识别影响无序固体延展性的微观因素。

Identifying microscopic factors that influence ductility in disordered solids.

作者信息

Xiao Hongyi, Zhang Ge, Yang Entao, Ivancic Robert, Ridout Sean, Riggleman Robert, Durian Douglas J, Liu Andrea J

机构信息

Department of Physics, University of Pennsylvania, Philadelphia, PA 19104.

Chemical and Biological Engineering, Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany.

出版信息

Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2307552120. doi: 10.1073/pnas.2307552120. Epub 2023 Oct 9.

Abstract

There are empirical strategies for tuning the degree of strain localization in disordered solids, but they are system-specific and no theoretical framework explains their effectiveness or limitations. Here, we study three model disordered solids: a simulated atomic glass, an experimental granular packing, and a simulated polymer glass. We tune each system using a different strategy to exhibit two different degrees of strain localization. In tandem, we construct structuro-elastoplastic (StEP) models, which reduce descriptions of the systems to a few microscopic features that control strain localization, using a machine learning-based descriptor, softness, to represent the stability of the disordered local structure. The models are based on calculated correlations of softness and rearrangements. Without additional parameters, the models exhibit semiquantitative agreement with observed stress-strain curves and softness statistics for all systems studied. Moreover, the StEP models reveal that initial structure, the near-field effect of rearrangements on local structure, and rearrangement size, respectively, are responsible for the changes in ductility observed in the three systems. Thus, StEP models provide microscopic understanding of how strain localization depends on the interplay of structure, plasticity, and elasticity.

摘要

对于调整无序固体中的应变局部化程度,存在一些经验策略,但这些策略是针对特定系统的,且尚无理论框架能够解释其有效性或局限性。在此,我们研究了三种模型无序固体:一种模拟原子玻璃、一种实验性颗粒堆积以及一种模拟聚合物玻璃。我们使用不同策略对每个系统进行调整,以展现两种不同程度的应变局部化。同时,我们构建了结构弹塑性(StEP)模型,该模型利用基于机器学习的描述符“柔软度”来表示无序局部结构的稳定性,从而将系统的描述简化为几个控制应变局部化的微观特征。这些模型基于计算得到的柔软度与重排之间的相关性。在没有额外参数的情况下,这些模型与所研究的所有系统的观测应力 - 应变曲线和柔软度统计数据呈现出半定量的一致性。此外,StEP模型表明,初始结构、重排对局部结构的近场效应以及重排大小分别是导致在这三个系统中观察到的延展性变化的原因。因此,StEP模型提供了对应变局部化如何依赖于结构、塑性和弹性相互作用的微观理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e82f/10589640/1c306d0f3052/pnas.2307552120fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验