Suppr超能文献

无序固体中可塑性通用特征的结构-性质关系

Structure-property relationships from universal signatures of plasticity in disordered solids.

作者信息

Cubuk E D, Ivancic R J S, Schoenholz S S, Strickland D J, Basu A, Davidson Z S, Fontaine J, Hor J L, Huang Y-R, Jiang Y, Keim N C, Koshigan K D, Lefever J A, Liu T, Ma X-G, Magagnosc D J, Morrow E, Ortiz C P, Rieser J M, Shavit A, Still T, Xu Y, Zhang Y, Nordstrom K N, Arratia P E, Carpick R W, Durian D J, Fakhraai Z, Jerolmack D J, Lee Daeyeon, Li Ju, Riggleman R, Turner K T, Yodh A G, Gianola D S, Liu Andrea J

机构信息

Google Brain, Mountain View, CA 94043, USA.

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Science. 2017 Nov 24;358(6366):1033-1037. doi: 10.1126/science.aai8830.

Abstract

When deformed beyond their elastic limits, crystalline solids flow plastically via particle rearrangements localized around structural defects. Disordered solids also flow, but without obvious structural defects. We link structure to plasticity in disordered solids via a microscopic structural quantity, "softness," designed by machine learning to be maximally predictive of rearrangements. Experimental results and computations enabled us to measure the spatial correlations and strain response of softness, as well as two measures of plasticity: the size of rearrangements and the yield strain. All four quantities maintained remarkable commonality in their values for disordered packings of objects ranging from atoms to grains, spanning seven orders of magnitude in diameter and 13 orders of magnitude in elastic modulus. These commonalities link the spatial correlations and strain response of softness to rearrangement size and yield strain, respectively.

摘要

当晶体固体变形超过其弹性极限时,会通过围绕结构缺陷局部化的粒子重排进行塑性流动。无序固体也会流动,但没有明显的结构缺陷。我们通过一种微观结构量“柔软度”将无序固体中的结构与可塑性联系起来,该量由机器学习设计,能够最大程度地预测重排。实验结果和计算使我们能够测量柔软度的空间相关性和应变响应,以及两种可塑性度量:重排大小和屈服应变。对于从原子到颗粒的物体无序堆积,所有这四个量在其值上都保持了显著的共性,这些物体的直径跨越七个数量级,弹性模量跨越十三个数量级。这些共性分别将柔软度的空间相关性和应变响应与重排大小和屈服应变联系起来。

相似文献

2
Structural Properties of Defects in Glassy Liquids.玻璃态液体中缺陷的结构特性
J Phys Chem B. 2016 Jul 7;120(26):6139-46. doi: 10.1021/acs.jpcb.6b02144. Epub 2016 May 2.
3
Identifying microscopic factors that influence ductility in disordered solids.识别影响无序固体延展性的微观因素。
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2307552120. doi: 10.1073/pnas.2307552120. Epub 2023 Oct 9.
7
Scaling of relaxation and excess entropy in plastically deformed amorphous solids.塑性变形非晶态固体中弛豫和过剩熵的标度
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):11887-11893. doi: 10.1073/pnas.2000698117. Epub 2020 May 19.

引用本文的文献

2
Mechanical spectroscopy of materials using atomic force microscopy (AFM-MS).使用原子力显微镜的材料机械光谱学(AFM-MS)。
Mater Today (Kidlington). 2024 Nov;80:218-225. doi: 10.1016/j.mattod.2024.08.021. Epub 2024 Sep 13.
5
Structural origin of relaxation in dense colloidal suspensions.稠密胶体悬浮液中弛豫的结构起源。
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2405515121. doi: 10.1073/pnas.2405515121. Epub 2024 Oct 9.
7
The yielding of granular matter is marginally stable and critical.颗粒物质的屈服处于临界且勉强稳定的状态。
Proc Natl Acad Sci U S A. 2024 Aug 13;121(33):e2402843121. doi: 10.1073/pnas.2402843121. Epub 2024 Aug 8.
10
Information decomposition in complex systems via machine learning.通过机器学习实现复杂系统中的信息分解
Proc Natl Acad Sci U S A. 2024 Mar 26;121(13):e2312988121. doi: 10.1073/pnas.2312988121. Epub 2024 Mar 18.

本文引用的文献

1
Disconnecting structure and dynamics in glassy thin films.玻璃薄膜的结构与动力学的去耦。
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10601-10605. doi: 10.1073/pnas.1703927114. Epub 2017 Sep 19.
4
Structural Properties of Defects in Glassy Liquids.玻璃态液体中缺陷的结构特性
J Phys Chem B. 2016 Jul 7;120(26):6139-46. doi: 10.1021/acs.jpcb.6b02144. Epub 2016 May 2.
9
Predicting plasticity with soft vibrational modes: from dislocations to glasses.利用软振动模式预测可塑性:从位错到玻璃态
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):042304. doi: 10.1103/PhysRevE.89.042304. Epub 2014 Apr 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验