The University of Chicago, 5841 South Ellis Avenue, Chicago, IL 60637, United States of America.
Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America.
Biomed Phys Eng Express. 2023 Oct 26;9(6). doi: 10.1088/2057-1976/ad015b.
Proton Radiography can be used in conjunction with proton therapy for patient positioning, real-time estimates of stopping power, and adaptive therapy in regions with motion. The modeling capability shown here can be used to evaluate lens-based radiography as an instantaneous proton-based radiographic technique. The utilization of user-friendly Monte Carlo program TOPAS enables collaborators and other users to easily conduct medical- and therapy- based simulations of the Los Alamos Neutron Science Center (LANSCE). The resulting transport model is an open-source Monte Carlo package for simulations of proton and heavy ion therapy treatments and concurrent particle imaging.The four-quadrupole, magnetic lens system of the 800-MeV proton beamline at LANSCE is modeled in TOPAS. Several imaging and contrast objects were modelled to assess transmission at energies from 230-930 MeV and different levels of particle collimation. At different proton energies, the strength of the magnetic field was scaled according tothe inverse product of particle relativistic velocity and particle momentum.Materials with high atomic number, Z, (gold, gallium, bone-equivalent) generated more contrast than materials with low-Z (water, lung-equivalent, adipose-equivalent). A 5-mrad collimator was beneficial for tissue-to-contrast agent contrast, while a 10-mrad collimator was best to distinguish between different high-Z materials. Assessment with a step-wedge phantom showed water-equivalent path length did not scale directly according to predicted values but could be mapped more accurately with calibration. Poor image quality was observed at low energies (230 MeV), but improved as proton energy increased, with sub-mm resolution at 630 MeV.Proton radiography becomes viable for shallow bone structures at 330 MeV, and for deeper structures at 630 MeV. Visibility improves with use of high-Z contrast agents. This modality may be particularly viable at carbon therapy centers with accelerators capable of delivering high energy protons and could be performed with carbon therapy.
质子射线照相术可与质子治疗联合使用,用于患者定位、实时估计停止能力以及运动区域的自适应治疗。这里显示的建模能力可用于评估基于透镜的射线照相术作为瞬时质子基射线照相技术。用户友好的蒙特卡罗程序 TOPAS 的利用使合作者和其他用户能够轻松地对洛斯阿拉莫斯中子科学中心(LANSCE)进行基于医疗和治疗的模拟。由此产生的传输模型是一个用于质子和重离子治疗以及并发粒子成像的模拟的开源蒙特卡罗程序包。LANSCE 的 800-MeV 质子束线的四极、磁透镜系统在 TOPAS 中进行建模。为了评估能量在 230-930 MeV 之间以及不同水平的粒子准直的传输,对几种成像和对比度物体进行了建模。在不同的质子能量下,磁场强度根据粒子相对论速度和粒子动量的倒数进行缩放。高原子序数 Z(金、镓、骨等效)的材料比低 Z(水、肺等效、脂肪等效)的材料产生更多的对比度。5-mrad 准直器有利于组织与造影剂的对比度,而 10-mrad 准直器最有利于区分不同的高 Z 材料。使用阶跃楔形体评估表明,水等效路径长度没有根据预测值直接缩放,但可以通过校准更准确地映射。在低能量(230 MeV)下观察到图像质量差,但随着质子能量的增加而改善,在 630 MeV 时分辨率达到亚毫米级。质子射线照相术在 330 MeV 时对于浅层骨结构变得可行,在 630 MeV 时对于更深的结构变得可行。使用高 Z 造影剂可提高可见度。这种模态在具有能够输送高能质子的加速器的碳治疗中心可能特别可行,并且可以与碳治疗一起进行。