Suppr超能文献

笔形束扫描质子治疗中表面剂量的确定。

Determination of surface dose in pencil beam scanning proton therapy.

机构信息

West German Proton Therapy Center Essen (WPE), Essen, 45147, Germany.

University Hospital Essen, Essen, 45147, Germany.

出版信息

Med Phys. 2020 Jun;47(5):2277-2288. doi: 10.1002/mp.14086. Epub 2020 Mar 13.

Abstract

PURPOSE/OBJECTIVE: Quantification of surface dose within the first few hundred water equivalent µm is challenging. Nevertheless, it is of large interest for the proton therapy community to study dose effects in the skin. The experimental determination is affected by the detector properties, such as the detector volume and material. The International Commission on Radiation Units and Measurements in its report 39 recommends assessing the skin dose at a depth of 0.07 mm. The aim of this study is the estimation of the absorbed dose at and around a depth of 70 µm. We used various dosimetric approaches in conjunction with proton pencil beam scanning delivery to determine the skin dose in a clinical setting.

MATERIAL/METHODS: Five different detectors were tested for determining the surface dose in water: EBT3 and HD-V2 GAFCHROMIC™ radiochromic film, LiF:Mg,Ti thermoluminescent dosimeter, IBA PPC05 plane-parallel ionization chamber, and PTW 23391 extrapolation chamber. The irradiation setup consisted of quasi-monoenergetic scanned proton pencil beams with kinetic energies of 100, 150, and 226.7 MeV, respectively. Radiochromic films were placed within a vertical stack and in wedge geometry and were analyzed with FilmQA Pro™ adopting triple channel dosimetry. The extrapolation chamber PTW 23391, which served as a reference in the current work, was used in a conventional ionization chamber setup with a fixed electrode gap of 2 mm. Three Kapton® entrance windows with thicknesses of 25, 50, and 75 µm were employed. Thermoluminescent dosimeters were provided as powder and were pressed onto a sheet of aluminum. Furthermore, the Monte Carlo code TOol for PArticle Simulation (TOPAS) in version 3.1.p2 was used to model an IBA pencil beam scanning nozzle and score dose to water in a water phantom.

RESULTS

The resulting depth dose curves were normalized to their 100% dose at the reference depth of 3 cm. We obtained the skin doses with the extrapolation chamber and with TOPAS. For the experimental approach this resulted in 79.7 ± 0.3%, 86.0 ± 0.6%, and 87.1 ± 0.1% for the proton energies 100, 150, and 226.7 MeV, respectively. The results for TOPAS were 80.1 ± 0.2% (100 MeV), 87.1 ± 0.5% (150 MeV), and 86.9 ± 0.4% (226.7 MeV), respectively. Based on the experimental results of the skin dose, we provided a clinically relevant surface extrapolation factor for the common measurement methods. This allows the result of the first measurement depth of a detector to be scaled to the dose at the skin depth. Most practical would be the use of the surface extrapolation factor for the PPC05 chamber, due to its direct reading, the wide availability in clinics and the low uncertainties. The calculated factors were 0.986 ± 0.004 for 100 MeV, 0.961 ± 0.008 for 150 MeV, and 0.963 ± 0.003 for 226.7 MeV.

CONCLUSIONS

In this study, dissimilar experimental approaches were evaluated with respect to measurements at depths close to the surface. The experimental depth dose curves are in good agreement with the simulation with TOPAS Monte Carlo. To the author's knowledge this was the first experimental determination of the skin dose according to the International Commission on Radiation Units and Measurements 39 definition in proton pencil beam scanning.

摘要

目的/目标:在最初几百个水等效微米内量化表面剂量具有挑战性。然而,对于质子治疗界来说,研究皮肤中的剂量效应是非常感兴趣的。实验测定受到探测器特性的影响,例如探测器的体积和材料。国际辐射单位和测量委员会在其报告 39 中建议在 0.07 毫米深度评估皮肤剂量。本研究的目的是估算 70µm 深度处的吸收剂量。我们使用各种剂量学方法结合质子铅笔束扫描输送,在临床环境中确定皮肤剂量。

材料/方法:使用五种不同的探测器在水中确定表面剂量:EBT3 和 HD-V2 GAFCHROMIC™ 放射性铬胶片、LiF:Mg,Ti 热释光剂量计、IBA PPC05 平面平行电离室和 PTW 23391 扩展室。照射装置由具有分别为 100、150 和 226.7 MeV 的准单能扫描质子铅笔束组成。放射性铬胶片放置在垂直堆叠和楔形几何形状中,并采用三重通道剂量测定法使用 FilmQA Pro™进行分析。PTW 23391 扩展室在当前工作中用作参考,在具有 2 毫米固定电极间隙的常规电离室设置中使用。使用了三种厚度为 25、50 和 75 µm 的 Kapton® 入口窗。热释光剂量计作为粉末提供,并压在铝板上。此外,使用版本 3.1.p2 的 TOol for PArticle Simulation (TOPAS) 蒙特卡罗代码模拟 IBA 铅笔束扫描喷嘴,并在水模体中计算水的剂量。

结果

将得到的深度剂量曲线归一化为参考深度 3 cm 处的 100%剂量。我们使用扩展室和 TOPAS 获得皮肤剂量。对于实验方法,对于质子能量 100、150 和 226.7 MeV,这分别产生了 79.7±0.3%、86.0±0.6%和 87.1±0.1%。TOPAS 的结果分别为 80.1±0.2%(100 MeV)、87.1±0.5%(150 MeV)和 86.9±0.4%(226.7 MeV)。基于皮肤剂量的实验结果,我们为常见的测量方法提供了临床相关的表面外推因子。这允许将探测器的第一个测量深度的结果缩放为皮肤深度的剂量。由于其直接读数、在临床中的广泛可用性以及低不确定性,最实用的是 PPC05 室的表面外推因子。计算的因子分别为 100 MeV 时为 0.986±0.004,150 MeV 时为 0.961±0.008,226.7 MeV 时为 0.963±0.003。

结论

在这项研究中,评估了不同的实验方法在接近表面的深度处的测量。实验深度剂量曲线与 TOPAS 蒙特卡罗模拟非常吻合。据作者所知,这是根据国际辐射单位和测量委员会 39 定义首次在质子铅笔束扫描中进行的皮肤剂量的实验测定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验