Department of Automation, Xiamen University, Xiamen, 361000, Fujian, China.
National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361000, Fujian, China.
Genome Biol. 2023 Oct 9;24(1):225. doi: 10.1186/s13059-023-03072-y.
Application of the widely used droplet-based microfluidic technologies in single-cell sequencing often yields doublets, introducing bias to downstream analyses. Especially, doublet-detection methods for single-cell chromatin accessibility sequencing (scCAS) data have multiple assay-specific challenges. Therefore, we propose scIBD, a self-supervised iterative-optimizing model for boosting heterotypic doublet detection in scCAS data. scIBD introduces an adaptive strategy to simulate high-confident heterotypic doublets and self-supervise for doublet-detection in an iteratively optimizing manner. Comprehensive benchmarking on various simulated and real datasets demonstrates the outperformance and robustness of scIBD. Moreover, the downstream biological analyses suggest the efficacy of doublet-removal by scIBD.
基于液滴的微流控技术在单细胞测序中的广泛应用往往会产生二聚体,从而给下游分析带来偏差。特别是,单细胞染色质可及性测序(scCAS)数据的二聚体检测方法存在多个特定于检测方法的挑战。因此,我们提出了 scIBD,这是一种用于提高 scCAS 数据中异质二聚体检测的自监督迭代优化模型。scIBD 引入了一种自适应策略,用于模拟高置信度的异质二聚体,并以迭代优化的方式进行自我监督的二聚体检测。在各种模拟和真实数据集上的综合基准测试表明了 scIBD 的出色性能和鲁棒性。此外,下游的生物学分析表明,scIBD 能够有效地去除二聚体。