Suppr超能文献

应用人工智能深度学习方法进行基底细胞癌的常规皮肤科病理诊断。

Applying an artificial intelligence deep learning approach to routine dermatopathological diagnosis of basal cell carcinoma.

机构信息

MVZ Dermatopathology Duisburg Essen, Essen, Germany.

Center for Technical Mathematics (ZeTeM), University of Bremen, Bremen, Germany.

出版信息

J Dtsch Dermatol Ges. 2023 Nov;21(11):1329-1337. doi: 10.1111/ddg.15180. Epub 2023 Oct 9.

Abstract

BACKGROUND

Institutes of dermatopathology are faced with considerable challenges including a continuously rising numbers of submitted specimens and a shortage of specialized health care practitioners. Basal cell carcinoma (BCC) is one of the most common tumors in the fair-skinned western population and represents a major part of samples submitted for histological evaluation. Digitalizing glass slides has enabled the application of artificial intelligence (AI)-based procedures. To date, these methods have found only limited application in routine diagnostics. The aim of this study was to establish an AI-based model for automated BCC detection.

PATIENTS AND METHODS

In three dermatopathological centers, daily routine practice BCC cases were digitalized. The diagnosis was made both conventionally by analog microscope and digitally through an AI-supported algorithm based on a U-Net architecture neural network.

RESULTS

In routine practice, the model achieved a sensitivity of 98.23% (center 1) and a specificity of 98.51%. The model generalized successfully without additional training to samples from the other centers, achieving similarly high accuracies in BCC detection (sensitivities of 97.67% and 98.57% and specificities of 96.77% and 98.73% in centers 2 and 3, respectively). In addition, automated AI-based basal cell carcinoma subtyping and tumor thickness measurement were established.

CONCLUSIONS

AI-based methods can detect BCC with high accuracy in a routine clinical setting and significantly support dermatopathological work.

摘要

背景

皮肤科病理研究所面临着诸多挑战,包括提交标本数量的持续增加和专业医疗保健人员的短缺。基底细胞癌(BCC)是白种人群中最常见的肿瘤之一,也是提交进行组织学评估的样本的主要部分。数字化玻璃载玻片使人工智能(AI)为基础的程序得以应用。迄今为止,这些方法在常规诊断中的应用还很有限。本研究的目的是建立一种基于人工智能的自动 BCC 检测模型。

患者和方法

在三个皮肤科病理中心,日常常规的 BCC 病例被数字化。诊断是通过模拟显微镜常规进行的,也通过基于 U-Net 架构神经网络的 AI 支持算法进行数字诊断。

结果

在常规实践中,该模型的灵敏度为 98.23%(中心 1),特异性为 98.51%。该模型无需额外培训即可成功推广到其他中心的样本,在 BCC 检测中也达到了类似的高准确率(中心 2 和 3 的灵敏度分别为 97.67%和 98.57%,特异性分别为 96.77%和 98.73%)。此外,还建立了基于 AI 的自动 BCC 亚型和肿瘤厚度测量。

结论

基于人工智能的方法可以在常规临床环境中以高精度检测 BCC,并显著支持皮肤科病理工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验