Suppr超能文献

一种用于检测 Mohs 显微外科冷冻切片中皮肤鳞状细胞癌的深度学习算法:一项回顾性评估。

A deep learning algorithm to detect cutaneous squamous cell carcinoma on frozen sections in Mohs micrographic surgery: A retrospective assessment.

机构信息

Department of Dermatology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.

Dartmouth College, Hanover, New Hampshire, USA.

出版信息

Exp Dermatol. 2024 Jan;33(1):e14949. doi: 10.1111/exd.14949. Epub 2023 Oct 21.

Abstract

Intraoperative margin analysis is crucial for the successful removal of cutaneous squamous cell carcinomas (cSCC). Artificial intelligence technologies (AI) have previously demonstrated potential for facilitating rapid and complete tumour removal using intraoperative margin assessment for basal cell carcinoma. However, the varied morphologies of cSCC present challenges for AI margin assessment. The aim of this study was to develop and evaluate the accuracy of an AI algorithm for real-time histologic margin analysis of cSCC. To do this, a retrospective cohort study was conducted using frozen cSCC section slides. These slides were scanned and annotated, delineating benign tissue structures, inflammation and tumour to develop an AI algorithm for real-time margin analysis. A convolutional neural network workflow was used to extract histomorphological features predictive of cSCC. This algorithm demonstrated proof of concept for identifying cSCC with high accuracy, highlighting the potential for integration of AI into the surgical workflow. Incorporation of AI algorithms may improve efficiency and completeness of real-time margin assessment for cSCC removal, particularly in cases of moderately and poorly differentiated tumours/neoplasms. Further algorithmic improvement incorporating surrounding tissue context is necessary to remain sensitive to the unique epidermal landscape of well-differentiated tumours, and to map tumours to their original anatomical position/orientation.

摘要

术中切缘分析对于成功切除皮肤鳞状细胞癌(cSCC)至关重要。人工智能技术(AI)此前已证明具有在使用术中切缘评估基底细胞癌时促进快速、完全肿瘤切除的潜力。然而,cSCC 的不同形态为 AI 切缘评估带来了挑战。本研究旨在开发和评估用于 cSCC 实时组织学切缘分析的 AI 算法的准确性。为此,使用冷冻 cSCC 切片进行了回顾性队列研究。对这些切片进行扫描和注释,描绘良性组织结构、炎症和肿瘤,以开发用于实时切缘分析的 AI 算法。使用卷积神经网络工作流程提取预测 cSCC 的组织形态特征。该算法证明了识别 cSCC 的高准确性的概念验证,突出了将 AI 集成到手术工作流程中的潜力。AI 算法的纳入可能会提高 cSCC 切除的实时切缘评估的效率和完整性,特别是在中分化和低分化肿瘤/肿瘤的情况下。需要进一步改进算法,纳入周围组织背景,以保持对高分化肿瘤独特表皮景观的敏感性,并将肿瘤映射到其原始解剖位置/方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验