Suppr超能文献

多功能 Eu(III)-修饰的 HOFs:基于人工智能的洛克沙胂和马兜铃酸致癌物监测和潜在指纹识别。

Multifunctional Eu(III)-modified HOFs: roxarsone and aristolochic acid carcinogen monitoring and latent fingerprint identification based on artificial intelligence.

机构信息

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.

出版信息

Mater Horiz. 2023 Nov 27;10(12):5782-5795. doi: 10.1039/d3mh01253k.

Abstract

The exploration of multifunctional materials and intelligent technologies used for fluorescence sensing and latent fingerprint (LFP) identification is a research hotspot of material science. In this study, an emerging crystalline luminescent material, Eu-functionalized hydrogen-bonded organic framework (Eu@HOF-BTB, Eu@1), is fabricated successfully. Eu@1 can emit purple red fluorescence with a high photoluminescence quantum yield of 36.82%. Combined with artificial intelligence (AI) algorithms including support vector machine, principal component analysis, and hierarchical clustering analysis, Eu@1 as a sensor can concurrently distinguish two carcinogens, roxarsone and aristolochic acid, based on different mechanisms. The sensing process exhibits high selectivity, high efficiency, and excellent anti-interference. Meanwhile, Eu@1 is also an excellent eikonogen for LFP identification with high-resolution and high-contrast. Based on an automatic fingerprint identification system, the simultaneous differentiation of two fingerprint images is achieved. Moreover, a simulation experiment of criminal arrest is conducted. By virtue of the Alexnet-based fingerprint analysis platform of AI, unknown LFPs can be compared with a database to identify the criminal within one second with over 90% recognition accuracy. With AI technology, HOFs are applied for the first time in the LFP identification field, which provides a new material and solution for investigators to track criminal clues and handle cases efficiently.

摘要

用于荧光传感和潜伏指纹 (LFP) 识别的多功能材料和智能技术的探索是材料科学的研究热点。在本研究中,成功制备了一种新兴的晶态发光材料,Eu 功能化氢键有机骨架 (Eu@HOF-BTB,Eu@1)。Eu@1 可以发射出具有 36.82%高荧光量子产率的紫红色荧光。结合人工智能 (AI) 算法,包括支持向量机、主成分分析和层次聚类分析,Eu@1 可以基于不同的机制同时区分两种致癌物质,罗硝唑和马兜铃酸。传感过程表现出高选择性、高效率和优异的抗干扰性。同时,Eu@1 也是一种优秀的潜伏指纹识别示踪剂,具有高分辨率和高对比度。基于自动指纹识别系统,可以实现两个指纹图像的同时区分。此外,还进行了犯罪逮捕的模拟实验。借助基于 AI 的 Alexnet 的指纹分析平台,未知的 LFPs 可以与数据库进行比较,在一秒内以超过 90%的识别准确率识别罪犯。借助 AI 技术,HOFs 首次应用于 LFP 识别领域,为调查人员追踪犯罪线索和高效处理案件提供了新的材料和解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验