Wang Heyan, Zheng Danni, Zhang Yilei, Han Lin, Cao Zhibo, Lu Zhengang, Tan Jiubin
Ultra-Precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, P. R. China.
Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150001, P. R. China.
ACS Appl Mater Interfaces. 2023 Oct 25;15(42):49487-49499. doi: 10.1021/acsami.3c10474. Epub 2023 Oct 10.
In the era of fifth-generation networks and Internet-of-Things, the use of multiband electromagnetic radiation shielding is highly desirable for next-generation electronic devices. Herein, we report a systematic exploration of optoelectronic behaviors of ultrathin-silver-based shielding prototype (USP) film structures at the nanometer scale, unlocking the transparent ultrabroadband electromagnetic interference (EMI) shielding from microwave to terahertz frequencies. A theoretical model is proposed to optimize USP structures to achieve increased transparency, whereby optical antireflection resonances are introduced in dielectrics in conjunction with remarkable EMI shielding capability. USP can realize a state-of-the-art effective electromagnetic radiation shielding bandwidth with measured frequencies from 8 GHz up to 2 THz. Experimental results show that a basic USP ( = 10 nm) offers an average shielding efficiency of ∼27.5 dB from the X- to Ka-bands (8-40 GHz) and maintains a stable shielding performance of ∼22.6 dB across a broad range of 0.5-2 THz, with a measured optical transmittance of ∼95.2%. This extraordinary performance of ultrathin-silver-based film structures provides a new ultrabroadband EMI shielding paradigm for potential applications in next-generation electronics.
在第五代网络和物联网时代,下一代电子设备非常需要使用多频段电磁辐射屏蔽。在此,我们报告了对纳米级超薄银基屏蔽原型(USP)薄膜结构的光电行为进行的系统探索,开启了从微波到太赫兹频率的透明超宽带电磁干扰(EMI)屏蔽。提出了一个理论模型来优化USP结构以提高透明度,从而在电介质中引入光学抗反射共振并兼具卓越的EMI屏蔽能力。USP能够在8 GHz至2 THz的测量频率范围内实现最先进的有效电磁辐射屏蔽带宽。实验结果表明,一个基本的USP( = 10 nm)在X波段至Ka波段(8 - 40 GHz)提供约27.5 dB的平均屏蔽效率,并在0.5 - 2 THz的宽范围内保持约22.6 dB的稳定屏蔽性能,测量的光学透过率约为95.2%。这种超薄银基薄膜结构的非凡性能为下一代电子产品的潜在应用提供了一种新的超宽带EMI屏蔽范例。