Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.
Anal Chem. 2023 Oct 24;95(42):15707-15715. doi: 10.1021/acs.analchem.3c03077. Epub 2023 Oct 11.
The chemical complexity of biological tissues creates challenges in the analysis of lipids via imaging mass spectrometry. The presence of isobaric and isomeric compounds introduces chemical noise that makes it difficult to unambiguously identify and accurately map the spatial distributions of these compounds. Electron-induced dissociation (EID) has previously been shown to profile phosphatidylcholine (PCs) -isomers directly from rat brain tissue in matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry. However, the acquisition of true pixel-by-pixel images, as opposed to regional profiling measurements, using EID is difficult due to low fragmentation efficiency and precursor ion signal dilution into multiple fragment ion channels, resulting in low sensitivity. In this work, we have developed a sequential collision-induced dissociation (CID)/EID method to visualize the distribution of -isomers in MALDI imaging mass spectrometry experiments. Briefly, CID is performed on sodium-adducted PCs, which results in facile loss of the phosphocholine headgroup. This ion is then subjected to an EID analysis. Since the lipid headgroup is removed prior to EID, a major fragmentation pathway common to EID ion activation is eliminated, resulting in a more sensitive analysis. This sequential CID/EID workflow generates -specific fragment ions allowing for the assignment of the -positions. Carbon-carbon double-bond (C═C) positions are also localized along the fatty acyl tails by the presence of a 2 Da shift pattern in the fragment ions arising from carbon-carbon bond cleavages. Moreover, the integration of the CID/EID method into MALDI imaging mass spectrometry enables the mapping of the absolute and relative distribution of -isomers at every pixel. The localized relative abundances of -isomers vary throughout brain substructures and likely reflect different biological functions and metabolism.
生物组织的化学复杂性给通过成像质谱分析脂质带来了挑战。同量异位和同构化合物的存在引入了化学噪声,使得难以明确识别和准确绘制这些化合物的空间分布。电子诱导解离(EID)先前已被证明可直接从大鼠脑组织中的基质辅助激光解吸/电离(MALDI)成像质谱中对磷脂酰胆碱(PC)-异构体进行分析。然而,由于碎片化效率低且前体离子信号稀释到多个碎片离子通道中,EID 难以获得真正的逐像素图像,而不是区域剖析测量,导致灵敏度低。在这项工作中,我们开发了一种顺序碰撞诱导解离(CID)/EID 方法,用于可视化 MALDI 成像质谱实验中 -异构体的分布。简而言之,对加钠的 PC 进行 CID,导致磷酸胆碱头基易于丢失。然后对该离子进行 EID 分析。由于在 EID 之前去除了脂质头基,因此消除了 EID 离子活化的主要碎片化途径,从而提高了分析的灵敏度。这种顺序 CID/EID 工作流程产生 -特异性片段离子,允许分配 -位置。通过碳-碳键断裂产生的碎片离子中存在 2 Da 位移模式,也可以对脂肪酸尾部的碳-碳双键(C═C)位置进行定位。此外,将 CID/EID 方法集成到 MALDI 成像质谱中,能够在每个像素上绘制 -异构体的绝对和相对分布图谱。-异构体的局部相对丰度在脑亚结构中变化,可能反映了不同的生物学功能和代谢。