通过图像融合提高串联质谱离子/离子反应成像实验的空间分辨率。
Enhancing Spatial Resolution in Tandem Mass Spectrometry Ion/Ion Reaction Imaging Experiments through Image Fusion.
机构信息
Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.
出版信息
J Am Soc Mass Spectrom. 2024 Aug 7;35(8):1797-1805. doi: 10.1021/jasms.4c00144. Epub 2024 Jul 2.
We have recently developed a charge inversion ion/ion reaction to selectively derivatize phosphatidylserine lipids via gas-phase Schiff base formation. This tandem mass spectrometry (MS/MS) workflow enables the separation and detection of isobaric lipids in imaging mass spectrometry, but the images acquired using this workflow are limited to relatively poor spatial resolutions due to the current time and limit of detection requirements for these ion/ion reaction imaging mass spectrometry experiments. This trade-off between chemical specificity and spatial resolution can be overcome by using computational image fusion, which combines complementary information from multiple images. Herein, we demonstrate a proof-of-concept workflow that fuses a low spatial resolution (i.e., 125 μm) ion/ion reaction product ion image with higher spatial resolution (i.e., 25 μm) ion images from a full scan experiment performed using the same tissue section, which results in a predicted ion/ion reaction product ion image with a 5-fold improvement in spatial resolution. Linear regression, random forest regression, and two-dimensional convolutional neural network (2-D CNN) predictive models were tested for this workflow. Linear regression and 2D CNN models proved optimal for predicted ion/ion images of PS 40:6 and SHexCer d38:1, respectively.
我们最近开发了一种电荷反转离子/离子反应,通过气相席夫碱形成选择性地衍生磷脂酰丝氨酸脂质。这种串联质谱(MS/MS)工作流程能够在成像质谱中分离和检测等质荷比的脂质,但由于当前离子/离子反应成像质谱实验的时间和检测限要求,使用此工作流程获取的图像的空间分辨率相对较差。这种化学特异性和空间分辨率之间的权衡可以通过使用计算图像融合来克服,该方法结合了来自多个图像的互补信息。在此,我们展示了一个概念验证工作流程,该流程将低空间分辨率(即 125 μm)离子/离子反应产物离子图像与来自同一组织切片的全扫描实验的更高空间分辨率(即 25 μm)离子图像融合,从而得到空间分辨率提高 5 倍的预测离子/离子反应产物离子图像。针对该工作流程,我们测试了线性回归、随机森林回归和二维卷积神经网络(2D CNN)预测模型。线性回归和 2D CNN 模型分别被证明是预测 PS 40:6 和 SHexCer d38:1 的离子/离子图像的最佳模型。
相似文献
J Am Soc Mass Spectrom. 2024-8-7
2025-1
J Am Soc Mass Spectrom. 2024-7-3
本文引用的文献
Digit Discov. 2024-3-27
J Am Soc Mass Spectrom. 2023-9-6
Trends Analyt Chem. 2023-1