Suppr超能文献

基于机器学习的综合临床模型,用于预测非典型脑膜瘤患者的预后。

A machine learning-based integrated clinical model for predicting prognosis in atypical meningioma patients.

机构信息

Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450001, Henan Province, China.

International Joint Laboratory of Nervous System Malformations, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.

出版信息

Acta Neurochir (Wien). 2023 Dec;165(12):4191-4201. doi: 10.1007/s00701-023-05831-z. Epub 2023 Oct 11.

Abstract

PURPOSE

Atypical meningioma (AM) recurs in up to half of patients after surgical resection and may require adjuvant therapy to improve patient prognosis. Various clinicopathological features have been shown to have prognostic implications in AM, but an integrated prediction model is lacking. Thus, in this study, we aimed to develop and validate an integrated prognostic model for AM.

METHODS

A retrospective cohort of 528 adult AM patients surgically treated at our institution were randomly assigned to a training or validation group in a 7:3 ratio. Sixteen baseline demographic, clinical, and pathological parameters, progression-free survival (PFS), and overall survival (OS) were analysed. Sixty-five combinations of machine learning (ML) algorithms were used for model training and validation to predict tumour recurrence and patient mortality.

RESULTS

The random survival forest (RSF) model was the best model for predicting recurrence and death. Primary or secondary tumour, Ki-67 index, extent of resection, tumour size, brain involvement, tumour necrosis, and age contributed significantly to the model. The C-index value of the RSF recurrence prediction model reached 0.8080. The AUCs for 1-, 3-, and 5-year PFS were 0.83, 0.82, and 0.86, respectively. The C-index value of the RSF death prediction model reached 0.8890. The AUCs for 3-year and 5-year OS were 0.88 and 0.89, respectively.

CONCLUSION

A high-performing integrated RSF predictive model for AM recurrence and patient mortality was proposed that may guide therapeutic decision-making and long-term monitoring.

摘要

目的

非典型脑膜瘤(AM)患者在手术后有一半以上会复发,可能需要辅助治疗来改善患者的预后。各种临床病理特征已被证明与 AM 的预后有关,但缺乏综合预测模型。因此,本研究旨在建立和验证 AM 的综合预后模型。

方法

回顾性分析了在我院接受手术治疗的 528 例成人 AM 患者,按 7:3 的比例随机分配到训练组或验证组。分析了 16 个基线人口统计学、临床和病理参数、无进展生存期(PFS)和总生存期(OS)。使用 65 种机器学习(ML)算法组合进行模型训练和验证,以预测肿瘤复发和患者死亡。

结果

随机生存森林(RSF)模型是预测复发和死亡的最佳模型。原发或继发肿瘤、Ki-67 指数、切除范围、肿瘤大小、脑侵犯、肿瘤坏死和年龄对模型有显著贡献。RSF 复发预测模型的 C 指数值达到 0.8080。1 年、3 年和 5 年 PFS 的 AUC 分别为 0.83、0.82 和 0.86。RSF 死亡预测模型的 C 指数值达到 0.8890。3 年和 5 年 OS 的 AUC 分别为 0.88 和 0.89。

结论

提出了一种性能较高的 AM 复发和患者死亡的综合 RSF 预测模型,可能有助于指导治疗决策和长期监测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验