Abualnaja Siraj Y, Morris James S, Rashid Hamza, Cook William H, Helmy Adel E
Peterborough City Hospital, Peterborough, UK.
University of Cambridge, Cambridge, UK.
Acta Neurochir (Wien). 2024 Dec 17;166(1):505. doi: 10.1007/s00701-024-06344-z.
Meningiomas are the most common primary brain tumour and account for over one-third of cases. Traditionally, estimations of morbidity and mortality following surgical resection have depended on subjective assessments of various factors, including tumour volume, location, WHO grade, extent of resection (Simpson grade) and pre-existing co-morbidities, an approach fraught with subjective variability. This systematic review and meta-analysis seeks to evaluate the efficacy with which machine learning (ML) algorithms predict post-operative outcomes in meningioma patients.
A literature search was conducted in December 2023 by two independent reviewers through PubMed, DARE, Cochrane Library and SCOPUS electronic databases. Random-effects meta-analysis was conducted.
Systematic searches yielded 32 studies, comprising 142,459 patients and 139,043 meningiomas. Random-effects meta-analysis sought to generate restricted maximum-likelihood estimates for the accuracy of alternate ML algorithms in predicting several postoperative outcomes. ML models incorporating both clinical and radiomic data significantly outperformed models utilizing either data type alone as well as traditional methods. Pooled estimates for the AUCs achieved by different ML algorithms ranged from 0.74-0.81 in the prediction of overall survival and progression-/recurrence-free survival, with ensemble classifiers demonstrating particular promise for future clinical application. Additionally, current ML models may exhibit a bias in predictive accuracy towards female patients, presumably due to the higher prevalence of meningiomas in females.
This review underscores the potential of ML to improve the accuracy of prognoses for meningioma patients and provides insight into which model classes offer the greatest potential for predicting survival outcomes. However, future research will have to directly compare standardized ML methodologies to traditional approaches in large-scale, prospective studies, before their clinical utility can be confidently validated.
脑膜瘤是最常见的原发性脑肿瘤,占病例总数的三分之一以上。传统上,手术切除后的发病率和死亡率估计依赖于对各种因素的主观评估,包括肿瘤体积、位置、世界卫生组织分级、切除范围(辛普森分级)和既往合并症,这种方法充满了主观变异性。本系统评价和荟萃分析旨在评估机器学习(ML)算法预测脑膜瘤患者术后结局的有效性。
2023年12月,两名独立 reviewers 通过 PubMed、DARE、Cochrane 图书馆和 SCOPUS 电子数据库进行了文献检索。进行了随机效应荟萃分析。
系统检索产生了32项研究,包括142459名患者和139043个脑膜瘤。随机效应荟萃分析试图为替代 ML 算法预测几种术后结局的准确性生成受限最大似然估计。结合临床和影像组学数据的 ML 模型明显优于仅使用任何一种数据类型的模型以及传统方法。不同 ML 算法在预测总生存期和无进展/无复发生存期方面的 AUC 合并估计值范围为0.74 - 0.81,集成分类器在未来临床应用中显示出特别的前景。此外,目前的 ML 模型在预测准确性方面可能对女性患者存在偏差,推测是由于女性脑膜瘤的患病率较高。
本综述强调了 ML 在提高脑膜瘤患者预后准确性方面的潜力,并深入了解了哪些模型类别在预测生存结局方面具有最大潜力。然而,在其临床效用能够得到可靠验证之前,未来的研究必须在大规模前瞻性研究中将标准化的 ML 方法与传统方法进行直接比较。